Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Appl Environ Microbiol ; 83(18)2017 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-28733282

RESUMEN

Diverse members of the genus Clostridium produce botulinum neurotoxins (BoNTs), which cause a flaccid paralysis known as botulism. While multiple species of clostridia produce BoNTs, the majority of human botulism cases have been attributed to Clostridium botulinum groups I and II. Recent comparative genomic studies have demonstrated the genomic diversity within these BoNT-producing species. This report introduces a multiplex PCR assay for differentiating members of C. botulinum group I, C. sporogenes, and two major subgroups within C. botulinum group II. Coding region sequences unique to each of the four species/subgroups were identified by in silico analyses of thousands of genome assemblies, and PCR primers were designed to amplify each marker. The resulting multiplex PCR assay correctly assigned 41 tested isolates to the appropriate species or subgroup. A separate PCR assay to determine the presence of the ntnh gene (a gene associated with the botulinum neurotoxin gene cluster) was developed and validated. The ntnh gene PCR assay provides information about the presence or absence of the botulinum neurotoxin gene cluster and the type of gene cluster present (ha positive [ha+] or orfX+). The increased availability of whole-genome sequence data and comparative genomic tools enabled the design of these assays, which provide valuable information for characterizing BoNT-producing clostridia. The PCR assays are rapid, inexpensive tests that can be applied to a variety of sample types to assign isolates to species/subgroups and to detect clostridia with botulinum neurotoxin gene (bont) clusters.IMPORTANCE Diverse clostridia produce the botulinum neurotoxin, one of the most potent known neurotoxins. In this study, a multiplex PCR assay was developed to differentiate clostridia that are most commonly isolated in connection with human botulism cases: C. botulinum group I, C. sporogenes, and two major subgroups within C. botulinum group II. Since BoNT-producing and nontoxigenic isolates can be found in each species, a PCR assay to determine the presence of the ntnh gene, which is a universally present component of bont gene clusters, and to provide information about the type (ha+ or orfX+) of bont gene cluster present in a sample was also developed. The PCR assays provide simple, rapid, and inexpensive tools for screening uncharacterized isolates from clinical or environmental samples. The information provided by these assays can inform epidemiological studies, aid with identifying mixtures of isolates and unknown isolates in culture collections, and confirm the presence of bacteria of interest.


Asunto(s)
Técnicas de Tipificación Bacteriana/métodos , Toxinas Botulínicas/metabolismo , Botulismo/microbiología , Clostridium botulinum/aislamiento & purificación , Reacción en Cadena de la Polimerasa Multiplex/métodos , Neurotoxinas/metabolismo , Toxinas Botulínicas/genética , Clostridium botulinum/genética , Clostridium botulinum/metabolismo , Cartilla de ADN/genética , ADN Bacteriano/genética , Humanos , Familia de Multigenes , Neurotoxinas/genética
2.
Front Microbiol ; 12: 566908, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33716993

RESUMEN

Of the seven currently known botulinum neurotoxin-producing species of Clostridium, C. parabotulinum, or C. botulinum Group I, is the species associated with the majority of human botulism cases worldwide. Phylogenetic analysis of these bacteria reveals a diverse species with multiple genomic clades. The neurotoxins they produce are also diverse, with over 20 subtypes currently represented. The existence of different bont genes within very similar genomes and of the same bont genes/gene clusters within different bacterial variants/species indicates that they have evolved independently. The neurotoxin genes are associated with one of two toxin gene cluster types containing either hemagglutinin (ha) genes or orfX genes. These genes may be located within the chromosome or extrachromosomal elements such as large plasmids. Although BoNT-producing C parabotulinum bacteria are distributed globally, they are more ubiquitous in certain specific geographic regions. Notably, northern hemisphere strains primarily contain ha gene clusters while southern hemisphere strains have a preponderance of orfX gene clusters. OrfX C. parabotulinum strains constitute a subset of this species that contain highly conserved bont gene clusters having a diverse range of bont genes. While much has been written about strains with ha gene clusters, less attention has been devoted to those with orfX gene clusters. The recent sequencing of 28 orfX C. parabotulinum strains and the availability of an additional 91 strains for analysis provides an opportunity to compare genomic relationships and identify unique toxin gene cluster characteristics and locations within this species subset in depth. The mechanisms behind the independent processes of bacteria evolution and generation of toxin diversity are explored through the examination of bacterial relationships relating to source locations and evidence of horizontal transfer of genetic material among different bacterial variants, particularly concerning bont gene clusters. Analysis of the content and locations of the bont gene clusters offers insights into common mechanisms of genetic transfer, chromosomal integration, and development of diversity among these genes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA