Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Psychiatry ; 27(2): 918-928, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34785784

RESUMEN

The persistent and experience-dependent nature of drug addiction may result in part from epigenetic alterations, including non-coding micro-RNAs (miRNAs), which are both critical for neuronal function and modulated by cocaine in the striatum. Two major striatal cell populations, the striato-nigral and striato-pallidal projection neurons, express, respectively, the D1 (D1-SPNs) and D2 (D2-SPNs) dopamine receptor, and display distinct but complementary functions in drug-evoked responses. However, a cell-type-specific role for miRNAs action has yet to be clarified. Here, we evaluated the expression of a subset of miRNAs proposed to modulate cocaine effects in the nucleus accumbens (NAc) and dorsal striatum (DS) upon sustained cocaine exposure in mice and showed that these selected miRNAs were preferentially upregulated in the NAc. We focused on miR-1 considering the important role of some of its predicted mRNA targets, Fosb and Npas4, in the effects of cocaine. We validated these targets in vitro and in vivo. We explored the potential of miR-1 to regulate cocaine-induced behavior by overexpressing it in specific striatal cell populations. In DS D1-SPNs miR-1 overexpression downregulated Fosb and Npas4 and reduced cocaine-induced CPP reinstatement, but increased cue-induced cocaine seeking. In DS D2-SPNs miR-1 overexpression reduced the motivation to self-administer cocaine. Our results indicate a role of miR1 and its target genes, Fosb and Npas4, in these behaviors and highlight a precise cell-type- and region-specific modulatory role of miR-1, illustrating the importance of cell-specific investigations.


Asunto(s)
Cocaína , MicroARNs , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Cocaína/metabolismo , Cocaína/farmacología , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Neuronas/metabolismo , Núcleo Accumbens/metabolismo , Receptores de Dopamina D1/genética , Receptores de Dopamina D1/metabolismo , Autoadministración
2.
EMBO Rep ; 22(12): e51882, 2021 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-34661342

RESUMEN

We show here that the transcription factor Npas4 is an important regulator of medium spiny neuron spine density and electrophysiological parameters and that it determines the magnitude of cocaine-induced hyperlocomotion in mice. Npas4 is induced by synaptic stimuli that cause calcium influx, but not dopaminergic or PKA-stimulating input, in mouse medium spiny neurons and human iPSC-derived forebrain organoids. This induction is independent of ubiquitous kinase pathways such as PKA and MAPK cascades, and instead depends on calcineurin and nuclear calcium signalling. Npas4 controls a large regulon containing transcripts for synaptic molecules, such as NMDA receptors and VDCC subunits, and determines in vivo MSN spine density, firing rate, I/O gain function and paired-pulse facilitation. These functions at the molecular and cellular levels control the locomotor response to drugs of abuse, as Npas4 knockdown in the nucleus accumbens decreases hyperlocomotion in response to cocaine in male mice while leaving basal locomotor behaviour unchanged.


Asunto(s)
Trastornos Relacionados con Cocaína , Cocaína , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Cocaína/farmacología , Trastornos Relacionados con Cocaína/genética , Dopamina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/metabolismo , Núcleo Accumbens/metabolismo
3.
Int J Mol Sci ; 24(13)2023 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-37446179

RESUMEN

Cholesterol metabolism dysregulation is associated with several neurological disorders. In Huntington's disease (HD), several enzymes involved in cholesterol metabolism are downregulated, among which the neuronal cholesterol 24-hydroxylase, CYP46A1, is of particular interest. The restoration of CYP46A1 expression in striatal neurons of HD mouse models is beneficial for motor behavior, cholesterol metabolism, transcriptomic activity, and alleviates neuropathological hallmarks induced by mHTT. Among the genes regulated after CYP46A1 restoration, those involved in cholesterol synthesis and efflux may explain the positive effect of CYP46A1 on cholesterol precursor metabolites. Since cholesterol homeostasis results from a fine-tuning between neurons and astrocytes, we quantified the distribution of key genes regulating cholesterol metabolism and efflux in astrocytes and neurons using in situ hybridization coupled with S100ß and NeuN immunostaining, respectively. Neuronal expression of CYP46A1 in the striatum of HD zQ175 mice increased key cholesterol synthesis driver genes (Hmgcr, Dhcr24), specifically in neurons. This effect was associated with an increase of the srebp2 transcription factor gene that regulates most of the genes encoding for cholesterol enzymes. However, the cholesterol efflux gene, ApoE, was specifically upregulated in astrocytes by CYP46A1, probably though a paracrine effect. In summary, the neuronal expression of CYP46A1 has a dual and specific effect on neurons and astrocytes, regulating cholesterol metabolism. The neuronal restoration of CYP46A1 in HD paves the way for future strategies to compensate for mHTT toxicity.


Asunto(s)
Enfermedad de Huntington , Ratones , Animales , Colesterol 24-Hidroxilasa/genética , Enfermedad de Huntington/metabolismo , Neuronas/metabolismo , Colesterol/metabolismo , Homeostasis , Modelos Animales de Enfermedad , Cuerpo Estriado/metabolismo
4.
Proc Natl Acad Sci U S A ; 116(49): 24840-24851, 2019 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-31744868

RESUMEN

Huntington's disease (HD) is a chronic neurodegenerative disorder characterized by a late clinical onset despite ubiquitous expression of the mutant Huntingtin gene (HTT) from birth. Transcriptional dysregulation is a pivotal feature of HD. Yet, the genes that are altered in the prodromal period and their regulators, which present opportunities for therapeutic intervention, remain to be elucidated. Using transcriptional and chromatin profiling, we found aberrant transcription and changes in histone H3K27acetylation in the striatum of R6/1 mice during the presymptomatic disease stages. Integrating these data, we identified the Elk-1 transcription factor as a candidate regulator of prodromal changes in HD. Exogenous expression of Elk-1 exerted beneficial effects in a primary striatal cell culture model of HD, and adeno-associated virus-mediated Elk-1 overexpression alleviated transcriptional dysregulation in R6/1 mice. Collectively, our work demonstrates that aberrant gene expression precedes overt disease onset in HD, identifies the Elk-1 transcription factor as a key regulator linked to early epigenetic and transcriptional changes in HD, and presents evidence for Elk-1 as a target for alleviating molecular pathology in HD.


Asunto(s)
Epigenómica , Enfermedad de Huntington/genética , Proteína Elk-1 con Dominio ets/genética , Proteína Elk-1 con Dominio ets/metabolismo , Animales , Cuerpo Estriado/metabolismo , Dependovirus , Modelos Animales de Enfermedad , Histonas/metabolismo , Proteína Huntingtina/genética , Enfermedad de Huntington/tratamiento farmacológico , Ratones , Ratones Transgénicos , Neuronas/metabolismo , Proteínas Nucleares/metabolismo
5.
Brain ; 142(8): 2432-2450, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31286142

RESUMEN

Dysfunctions in brain cholesterol homeostasis have been extensively related to brain disorders. The main pathway for brain cholesterol elimination is its hydroxylation into 24S-hydroxycholesterol by the cholesterol 24-hydrolase, CYP46A1. Increasing evidence suggests that CYP46A1 has a role in the pathogenesis and progression of neurodegenerative disorders, and that increasing its levels in the brain is neuroprotective. However, the mechanisms underlying this neuroprotection remain to be fully understood. Huntington's disease is a fatal autosomal dominant neurodegenerative disease caused by an abnormal CAG expansion in huntingtin's gene. Among the multiple cellular and molecular dysfunctions caused by this mutation, altered brain cholesterol homeostasis has been described in patients and animal models as a critical event in Huntington's disease. Here, we demonstrate that a gene therapy approach based on the delivery of CYP46A1, the rate-limiting enzyme for cholesterol degradation in the brain, has a long-lasting neuroprotective effect in Huntington's disease and counteracts multiple detrimental effects of the mutated huntingtin. In zQ175 Huntington's disease knock-in mice, CYP46A1 prevented neuronal dysfunctions and restored cholesterol homeostasis. These events were associated to a specific striatal transcriptomic signature that compensates for multiple mHTT-induced dysfunctions. We thus explored the mechanisms for these compensations and showed an improvement of synaptic activity and connectivity along with the stimulation of the proteasome and autophagy machineries, which participate to the clearance of mutant huntingtin (mHTT) aggregates. Furthermore, BDNF vesicle axonal transport and TrkB endosome trafficking were restored in a cellular model of Huntington's disease. These results highlight the large-scale beneficial effect of restoring cholesterol homeostasis in neurodegenerative diseases and give new opportunities for developing innovative disease-modifying strategies in Huntington's disease.


Asunto(s)
Encéfalo/metabolismo , Colesterol 24-Hidroxilasa/uso terapéutico , Colesterol/metabolismo , Terapia Genética , Vectores Genéticos/uso terapéutico , Enfermedad de Huntington/terapia , Fármacos Neuroprotectores/uso terapéutico , Animales , Autofagia , Transporte Axonal , Factor Neurotrófico Derivado del Encéfalo/fisiología , Células Cultivadas , Corteza Cerebral/fisiopatología , Colesterol 24-Hidroxilasa/genética , Cuerpo Estriado/metabolismo , Cuerpo Estriado/fisiopatología , Dependovirus/genética , Endosomas/metabolismo , Técnicas de Sustitución del Gen , Vectores Genéticos/genética , Humanos , Proteína Huntingtina/genética , Enfermedad de Huntington/metabolismo , Glicoproteínas de Membrana/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Vías Nerviosas/fisiopatología , Fármacos Neuroprotectores/administración & dosificación , Oxiesteroles/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Agregación Patológica de Proteínas , Proteínas Tirosina Quinasas/fisiología , Prueba de Desempeño de Rotación con Aceleración Constante , Transmisión Sináptica , Transcriptoma
6.
Addict Biol ; 24(3): 364-375, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-29318708

RESUMEN

Conditioned place preference (CPP) is widely used for evaluating the rewarding effects of drugs. Like other memories, CPP is proposed to undergo reconsolidation during which it is unstable and sensitive to pharmacological inhibition. Previous studies have shown that cocaine CPP can be apparently erased by extracellular signal-regulated kinase (ERK) pathway inhibition during cocaine reconditioning (re-exposure to the drug-paired environment in the presence of the drug). Here, we show that blockade of D1 receptors during reconditioning prevented ERK activation and induced a loss of CPP. However, we also unexpectedly observed a CPP disappearance in mice that underwent testing and reconditioning with cocaine alone, specifically in strong conditioning conditions. The loss was due to the intermediate test. CPP was not recovered with reconditioning or priming in the short term, but it spontaneously reappeared after a month. When we challenged the D1 antagonist-mediated erasure, we observed that both a high dose of cocaine and a first CPP test were required for this effect. Our results also suggest a balance between D1-dependent ERK pathway activation and an A2a-dependent mechanism in D2 striatal neurons in controlling CPP expression. Our data reveal that, paradoxically, a simple CPP test can induce a complete (but transient) loss of place preference following strong but not weak cocaine conditioning. This study emphasizes the complex nature of CPP memory and the importance of multiple parameters that must be taken into consideration when investigating reconsolidation.


Asunto(s)
Cocaína/farmacología , Condicionamiento Psicológico/efectos de los fármacos , Inhibidores de Captación de Dopamina/farmacología , Animales , Benzazepinas/farmacología , Cuerpo Estriado/metabolismo , Relación Dosis-Respuesta a Droga , Técnica del Anticuerpo Fluorescente , Masculino , Ratones Endogámicos C57BL , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Neuronas/metabolismo , Receptores de Dopamina D1/antagonistas & inhibidores , Receptores de Dopamina D1/efectos de los fármacos , Receptores de Dopamina D2/efectos de los fármacos , Recompensa
7.
Eur J Neurosci ; 45(1): 198-206, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27717053

RESUMEN

Huntington's disease, an inherited neurodegenerative disorder, results from abnormal polyglutamine extension in the N-terminal region of the huntingtin protein. This mutation causes preferential degeneration of striatal projection neurons. We previously demonstrated, in vitro, that dopaminergic D2 receptor stimulation acted in synergy with expanded huntingtin to increase aggregates formation and striatal death through activation of the Rho/ROCK signaling pathway. In vivo, in a lentiviral-mediated model of expanded huntingtin expression in the rat striatum, we found that the D2 antagonist haloperidol protects striatal neurons against expanded huntingtin-mediated toxicity. Two variant transcripts are generated by alternative splicing of the of D2 receptor gene, the D2R-Long and the D2R-Short, which are thought to play different functional roles. We show herein that overexpression of D2R-Short, but not D2R-Long in cell lines is associated with activation of the RhoA/ROCK signaling pathway. In striatal neurons in culture, the selective D2 agonist Quinpirole triggers phosphorylation of cofilin, a downstream effector of ROCK, which is abrogated by siRNAs that knockdown both D2R-Long and D2R-Short, but not by siRNAs targeting D2R-Long alone. Aggregate formation and neuronal death induced by expanded huntingtin, were potentiated by Quinpirole. This D2 agonist-mediated effect was selectively inhibited by the siRNA targeting both D2R-Long and D2R-Short but not D2R-Long alone. Our data provide evidence for a specific coupling of D2R-Short to the RhoA/ROCK/cofilin pathway, and its involvement in striatal vulnerability to expanded huntingtin. A new route for targeting Rho-ROCK signaling in Huntington's disease is unraveled with our findings.


Asunto(s)
Cuerpo Estriado/metabolismo , Enfermedad de Huntington/metabolismo , Neostriado/metabolismo , Neuronas/metabolismo , Receptores de Dopamina D2/metabolismo , Transducción de Señal , Dopamina/metabolismo , Humanos , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/genética , Isoformas de Proteínas/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Quinasas Asociadas a rho/metabolismo
8.
Brain ; 139(Pt 3): 953-70, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26912634

RESUMEN

Huntington's disease is an autosomal dominant neurodegenerative disease caused by abnormal polyglutamine expansion in huntingtin (Exp-HTT) leading to degeneration of striatal neurons. Altered brain cholesterol homeostasis has been implicated in Huntington's disease, with increased accumulation of cholesterol in striatal neurons yet reduced levels of cholesterol metabolic precursors. To elucidate these two seemingly opposing dysregulations, we investigated the expression of cholesterol 24-hydroxylase (CYP46A1), the neuronal-specific and rate-limiting enzyme for cholesterol conversion to 24S-hydroxycholesterol (24S-OHC). CYP46A1 protein levels were decreased in the putamen, but not cerebral cortex samples, of post-mortem Huntington's disease patients when compared to controls. Cyp46A1 mRNA and CYP46A1 protein levels were also decreased in the striatum of the R6/2 Huntington's disease mouse model and in SThdhQ111 cell lines. In vivo, in a wild-type context, knocking down CYP46A1 expression in the striatum, via an adeno-associated virus-mediated delivery of selective shCYP46A1, reproduced the Huntington's disease phenotype, with spontaneous striatal neuron degeneration and motor deficits, as assessed by rotarod. In vitro, CYP46A1 restoration protected SThdhQ111 and Exp-HTT-expressing striatal neurons in culture from cell death. In the R6/2 Huntington's disease mouse model, adeno-associated virus-mediated delivery of CYP46A1 into the striatum decreased neuronal atrophy, decreased the number, intensity level and size of Exp-HTT aggregates and improved motor deficits, as assessed by rotarod and clasping behavioural tests. Adeno-associated virus-CYP46A1 infection in R6/2 mice also restored levels of cholesterol and lanosterol and increased levels of desmosterol. In vitro, lanosterol and desmosterol were found to protect striatal neurons expressing Exp-HTT from death. We conclude that restoring CYP46A1 activity in the striatum promises a new therapeutic approach in Huntington's disease.


Asunto(s)
Colesterol/metabolismo , Enfermedad de Huntington/enzimología , Enfermedad de Huntington/prevención & control , Esteroide Hidroxilasas/biosíntesis , Anciano , Anciano de 80 o más Años , Animales , Células Cultivadas , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Colesterol 24-Hidroxilasa , Femenino , Humanos , Enfermedad de Huntington/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Persona de Mediana Edad
9.
PLoS Genet ; 10(9): e1004574, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25254549

RESUMEN

Polycomb group (PcG) proteins bind to and repress genes in embryonic stem cells through lineage commitment to the terminal differentiated state. PcG repressed genes are commonly characterized by the presence of the epigenetic histone mark H3K27me3, catalyzed by the Polycomb repressive complex 2. Here, we present in vivo evidence for a previously unrecognized plasticity of PcG-repressed genes in terminally differentiated brain neurons of parkisonian mice. We show that acute administration of the dopamine precursor, L-DOPA, induces a remarkable increase in H3K27me3S28 phosphorylation. The induction of the H3K27me3S28p histone mark specifically occurs in medium spiny neurons expressing dopamine D1 receptors and is dependent on Msk1 kinase activity and DARPP-32-mediated inhibition of protein phosphatase-1. Chromatin immunoprecipitation (ChIP) experiments showed that increased H3K27me3S28p was accompanied by reduced PcG binding to regulatory regions of genes. An analysis of the genome wide distribution of L-DOPA-induced H3K27me3S28 phosphorylation by ChIP sequencing (ChIP-seq) in combination with expression analysis by RNA-sequencing (RNA-seq) showed that the induction of H3K27me3S28p correlated with increased expression of a subset of PcG repressed genes. We found that induction of H3K27me3S28p persisted during chronic L-DOPA administration to parkisonian mice and correlated with aberrant gene expression. We propose that dopaminergic transmission can activate PcG repressed genes in the adult brain and thereby contribute to long-term maladaptive responses including the motor complications, or dyskinesia, caused by prolonged administration of L-DOPA in Parkinson's disease.


Asunto(s)
Dopamina/metabolismo , Regulación de la Expresión Génica , Trastornos Parkinsonianos/genética , Trastornos Parkinsonianos/metabolismo , Proteínas del Grupo Polycomb/genética , Transducción de Señal , Activación Transcripcional , Animales , Modelos Animales de Enfermedad , Fosfoproteína 32 Regulada por Dopamina y AMPc/metabolismo , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Sitios Genéticos , Histonas/metabolismo , Levodopa/farmacología , Ratones , Ratones Noqueados , Fosforilación/efectos de los fármacos , Unión Proteica , ARN Mensajero/genética , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo
10.
Hum Mol Genet ; 20(12): 2422-34, 2011 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-21493629

RESUMEN

Huntington's disease (HD) is a neurodegenerative disorder due to abnormal polyglutamine expansion in huntingtin protein (Exp-Htt). This expansion causes protein aggregation, leading to neuronal dysfunction and death. We have previously shown that mitogen- and stress-activated kinase (MSK-1), a nuclear protein kinase involved in chromatin remodeling through histone H3 phosphorylation, is deficient in the striatum of HD patients and model mice. Restoring MSK-1 expression in cultured striatal cells prevented neuronal dysfunction and death induced by Exp-Htt. Here we extend these observations in a rat model of HD based on striatal lentiviral expression of Exp-Htt (LV-Exp-HTT). MSK-1 overexpression attenuated Exp-Htt-induced down-regulation of DARPP-32 expression 4 and 10 weeks after infection and enhanced NeuN staining after 10 weeks. LV-MSK-1 induced constitutive hyperphosphorylation of H3 and cAMP-responsive element binding protein (CREB), indicating that MSK-1 has spontaneous catalytic activity. MSK-1 overexpression also upregulated peroxisome proliferator-activated receptor γ coactivator alpha (PGC-1α), a transcriptional co-activator involved in mitochondrial biogenesis. Chromatin immunoprecipitation indicated that transcriptional regulation of PGC-1α is directly linked to increased binding of MSK-1, along with H3 and CREB phosphorylation of the PGC-1α promoter. MSK-1 knock-out mice showed spontaneous striatal atrophy as they aged, as well as higher susceptibility to systemic administration of the mitochondrial neurotoxin 3-NP. These results indicate that MSK-1 activation is an important and key event in the signaling cascade that regulates PGC-1α expression. Strategies aimed at restoring MSK-1 expression in the striatum might offer a new therapeutic approach to HD.


Asunto(s)
Ensamble y Desensamble de Cromatina/efectos de los fármacos , Cuerpo Estriado/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Enfermedad de Huntington/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Fármacos Neuroprotectores/farmacología , Proteínas Nucleares/metabolismo , Proteínas Quinasas S6 Ribosómicas 90-kDa/farmacología , Análisis de Varianza , Animales , Ensamble y Desensamble de Cromatina/fisiología , Inmunoprecipitación de Cromatina , Expansión de las Repeticiones de ADN/genética , Fosfoproteína 32 Regulada por Dopamina y AMPc/metabolismo , Regulación de la Expresión Génica/fisiología , Vectores Genéticos/genética , Proteína Huntingtina , Inmunohistoquímica , Lentivirus , Ratones , Ratones Noqueados , Microscopía Fluorescente , Proteínas del Tejido Nervioso/genética , Fármacos Neuroprotectores/metabolismo , Proteínas Nucleares/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Fosforilación , Regiones Promotoras Genéticas/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Ratas , Ratas Wistar , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
11.
J Neurosci ; 31(40): 14296-307, 2011 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-21976515

RESUMEN

Activation of the extracellular signal-regulated kinase (ERK) signaling pathway in the striatum is crucial for molecular adaptations and long-term behavioral alterations induced by cocaine. In response to cocaine, ERK controls the phosphorylation levels of both mitogen and stress-activated protein kinase 1 (MSK-1), a nuclear kinase involved in histone H3 (Ser10) and cAMP response element binding protein phosphorylation, and Elk-1, a transcription factor involved in serum response element (SRE)-driven gene regulations. We recently characterized the phenotype of msk-1 knock-out mice in response to cocaine. Herein, we wanted to address the role of Elk-1 phosphorylation in cocaine-induced molecular, morphological, and behavioral responses. We used a cell-penetrating peptide, named TAT-DEF-Elk-1 (TDE), which corresponds to the DEF docking domain of Elk-1 toward ERK and inhibits Elk-1 phosphorylation induced by ERKs without modifying ERK or MSK-1 in vitro. The peptide was injected in vivo before cocaine administration in mice. Immunocytochemical, molecular, morphological, and behavioral studies were performed. The TDE inhibited Elk-1 and H3 (Ser10) phosphorylation induced by cocaine, sparing ERK and MSK-1 activation. Consequently, TDE altered cocaine-induced regulation of genes bearing SRE site(s) in their promoters, including c-fos, zif268, ΔFosB, and arc/arg3.1 (activity-regulated cytoskeleton-associated protein). In a chronic cocaine administration paradigm, TDE reversed cocaine-induced increase in dendritic spine density. Finally, the TDE delayed the establishment of cocaine-induced psychomotor sensitization and conditioned-place preference. We conclude that Elk-1 phosphorylation downstream from ERK is a key molecular event involved in long-term neuronal and behavioral adaptations to cocaine.


Asunto(s)
Cocaína/farmacología , Inhibición Neural/fisiología , Proteína Elk-1 con Dominio ets/antagonistas & inhibidores , Proteína Elk-1 con Dominio ets/metabolismo , Secuencia de Aminoácidos , Animales , Células Cultivadas , Relación Dosis-Respuesta a Droga , Masculino , Ratones , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Inhibición Neural/efectos de los fármacos , Péptidos/metabolismo , Péptidos/farmacología , Fosforilación/efectos de los fármacos , Fosforilación/fisiología
12.
Front Aging Neurosci ; 14: 797220, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35517051

RESUMEN

Huntington's disease (HD) is an autosomal dominant genetic disorder caused by an expansion of the CAG repeat in the first exon of Huntingtin's gene. The associated neurodegeneration mainly affects the striatum and the cortex at early stages and progressively spreads to other brain structures. Targeting HD at its earlier stages is under intense investigation. Numerous drugs were tested, with a rate of success of only 3.5% approved molecules used as symptomatic treatment. The restoration of cholesterol metabolism, which is central to the brain homeostasis and strongly altered in HD, could be an interesting disease-modifying strategy. Cholesterol is an essential membrane component in the central nervous system (CNS); alterations of its homeostasis have deleterious consequences on neuronal functions. The levels of several sterols, upstream of cholesterol, are markedly decreased within the striatum of HD mouse model. Transcription of cholesterol biosynthetic genes is reduced in HD cell and mouse models as well as post-mortem striatal and cortical tissues from HD patients. Since the dynamic of brain cholesterol metabolism is complex, it is essential to establish the best method to target it in HD. Cholesterol, which does not cross the blood-brain-barrier, is locally synthesized and renewed within the brain. All cell types in the CNS synthesize cholesterol during development but as they progress through adulthood, neurons down-regulate their cholesterol synthesis and turn to astrocytes for their full supply. Cellular levels of cholesterol reflect the dynamic balance between synthesis, uptake and export, all integrated into the context of the cross talk between neurons and glial cells. In this review, we describe the latest advances regarding the role of cholesterol deregulation in neuronal functions and how this could be a determinant factor in neuronal degeneration and HD progression. The pathways and major mechanisms by which cholesterol and sterols are regulated in the CNS will be described. From this overview, we discuss the main clinical strategies for manipulating cholesterol metabolism in the CNS, and how to reinstate a proper balance in HD.

13.
Neuropharmacology ; 218: 109205, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-35940348

RESUMEN

By decreasing glutamate transmission, mGlu4 receptor positive allosteric modulators (mGlu4-PAM), in combination with levodopa (l-DOPA) may restore the synergy between glutamatergic and dopaminergic transmissions, thus maximizing the improvement of motor function in Parkinson's disease (PD). This study aimed to clarify the effects of foliglurax, a selective mGlu4-PAM, on the loss of bidirectional synaptic plasticity associated with l-DOPA-induced dyskinesia (LID). Behavioral assessments compared dyskinesia intensity in 6-hydroxydopamine (6-OHDA)-lesioned rats treated with l-DOPA or l-DOPA plus foliglurax. In slices from the same rats, patch-clamp techniques were used to examine electrophysiological differences in glutamatergic synapses, evaluating the EPSCs mediated by NMDA and AMPA receptors in striatal spiny projection neurons. High-frequency stimulation of corticostriatal fibers was used as long-term potentiation (LTP)-inducing protocol. Conversely, 15 min of low-frequency stimulation was applied to depotentiate LTP. The density of dendritic spines was measured in striatal slices in the same experimental conditions. Our results show that, in corticostriatal slices, foliglurax decreased spontaneous glutamatergic transmission in both sham-operated and 6-OHDA lesioned rats. When co-administered with l-DOPA in 6-OHDA-lesioned rats, foliglurax fully restored dendritic spine density in a dose-dependent manner. Moreover, this co-treatment rescued striatal bidirectional plasticity and attenuated the intensity of l-DOPA-induced dyskinesia. This is the first demonstration in an animal model of PD and dyskinesia that a mGlu4 PAM can restore striatal synaptic plasticity.


Asunto(s)
Discinesia Inducida por Medicamentos , Enfermedad de Parkinson , Trastornos Parkinsonianos , Animales , Antiparkinsonianos/efectos adversos , Cuerpo Estriado , Modelos Animales de Enfermedad , Discinesia Inducida por Medicamentos/tratamiento farmacológico , Levodopa/efectos adversos , Oxidopamina/toxicidad , Trastornos Parkinsonianos/inducido químicamente , Trastornos Parkinsonianos/tratamiento farmacológico , Ratas
14.
Sci Adv ; 7(43): eabg5970, 2021 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-34669474

RESUMEN

Addictive drugs increase dopamine in the nucleus accumbens (NAc), where it persistently shapes excitatory glutamate transmission and hijacks natural reward processing. Here, we provide evidence, from mice to humans, that an underlying mechanism relies on drug-evoked heteromerization of glutamate N-methyl-d-aspartate receptors (NMDAR) with dopamine receptor 1 (D1R) or 2 (D2R). Using temporally controlled inhibition of D1R-NMDAR heteromerization, we unraveled their selective implication in early phases of cocaine-mediated synaptic, morphological, and behavioral responses. In contrast, preventing D2R-NMDAR heteromerization blocked the persistence of these adaptations. Interfering with these heteromers spared natural reward processing. Notably, we established that D2R-NMDAR complexes exist in human samples and showed that, despite a decreased D2R protein expression in the NAc, individuals with psychostimulant use disorder display a higher proportion of D2R forming heteromers with NMDAR. These findings contribute to a better understanding of molecular mechanisms underlying addiction and uncover D2R-NMDAR heteromers as targets with potential therapeutic value.

15.
Mol Cell Neurosci ; 41(3): 325-36, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19398002

RESUMEN

Nuclear translocation of activated extracellular signal-regulated kinases (ERK) in neurons is critical for gene regulations underlying long-term neuronal adaptation and memory formation. However, it is unknown how activated ERK travel from the post-synaptic elements where their activation occurs, to the nucleus where they translocate to exert their transcriptional roles. In cultured neurons, we identified endocytosis as a prime event in glutamate-induced nuclear trafficking of ERK2. We show that glutamate triggers a rapid recruitment of ERK2 to a protein complex comprising markers of the clathrin-dependent endocytotic and AMPA/glutamate receptor subtype. Inhibition of endocytosis results in a neuritic withholding of activated ERK2 without modification of ERK2 activity. As a consequence, endocytosis blockade alters ERK-dependent nuclear events, such as mitogen and stressed-activated kinase-1 (MSK-1) activation, histone H3 phosphorylation and gene regulations. Our data provide the first evidence that the endocytic pathway controls ERK nuclear translocation and ERK-dependent gene regulations induced by glutamate.


Asunto(s)
Núcleo Celular/metabolismo , Endocitosis/efectos de los fármacos , Ácido Glutámico/farmacología , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Animales , Técnicas de Cultivo de Célula , Línea Celular , Núcleo Celular/efectos de los fármacos , Chlorocebus aethiops , Ensamble y Desensamble de Cromatina , Activación Enzimática , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Transporte de Proteínas/efectos de los fármacos , Ratas , Receptores AMPA/metabolismo , Receptores de Glutamato/metabolismo , Proteína Elk-1 con Dominio ets/metabolismo
16.
Adv Exp Med Biol ; 685: 45-63, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20687494

RESUMEN

Huntington's disease (HD) is one of the most frequently found neurodegenerative disorders. Its main clinical manifestations are chorea, cognitive impairment and psychiatric disorders. It is an autosomal-dominant disorder with almost complete penetrance. The mutation responsible for HD, unstable expansion of a CAG repeat, is located in the 5' terminal section of the gene (IT15) that encodes huntingtin protein (Htt). The pathophysiology of HD is not entirely clear. One intriguing characteristic of HD is the special vulnerability of the striatum tomutated Htt, despite similar expression of the mutated protein in other brain regions. Aggregation of mutated Htt, transcriptional dysregulation, altered energy metabolism, excitotoxicity, impaired axonal transport and altered synaptic transmission culminate in neuronal dysfunction and death. There is currently no way of preventing or slowing down the disease progression and death usually occurs at about 20 years after diagnosis.


Asunto(s)
Trastornos de los Cromosomas/metabolismo , Enfermedad de Huntington/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/metabolismo , Expansión de Repetición de Trinucleótido , Animales , Axones/metabolismo , Axones/patología , Ganglios Basales/metabolismo , Ganglios Basales/patología , Ganglios Basales/fisiopatología , Transporte Biológico/genética , Trastornos de los Cromosomas/genética , Trastornos de los Cromosomas/patología , Trastornos de los Cromosomas/fisiopatología , Metabolismo Energético/genética , Humanos , Proteína Huntingtina , Enfermedad de Huntington/genética , Enfermedad de Huntington/patología , Enfermedad de Huntington/fisiopatología , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/genética
17.
Biol Psychiatry ; 87(11): 944-953, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-31928716

RESUMEN

Addiction is characterized by a compulsive pattern of drug seeking and consumption and a high risk of relapse after withdrawal that are thought to result from persistent adaptations within brain reward circuits. Drugs of abuse increase dopamine (DA) concentration in these brain areas, including the striatum, which shapes an abnormal memory trace of drug consumption that virtually highjacks reward processing. Long-term neuronal adaptations of gamma-aminobutyric acidergic striatal projection neurons (SPNs) evoked by drugs of abuse are critical for the development of addiction. These neurons form two mostly segregated populations, depending on the DA receptor they express and their output projections, constituting the so-called direct (D1 receptor) and indirect (D2 receptor) SPN pathways. Both SPN subtypes receive converging glutamate inputs from limbic and cortical regions, encoding contextual and emotional information, together with DA, which mediates reward prediction and incentive values. DA differentially modulates the efficacy of glutamate synapses onto direct and indirect SPN pathways by recruiting distinct striatal signaling pathways, epigenetic and genetic responses likely involved in the transition from casual drug use to addiction. Herein we focus on recent studies that have assessed psychostimulant-induced alterations in a cell-type-specific manner, from remodeling of input projections to the characterization of specific molecular events in each SPN subtype and their impact on long-lasting behavioral adaptations. We discuss recent evidence revealing the complex and concerted action of both SPN populations on drug-induced behavioral responses, as these studies can contribute to the design of future strategies to alleviate specific behavioral components of addiction.


Asunto(s)
Cuerpo Estriado , Dopamina , Cuerpo Estriado/metabolismo , Neuronas/metabolismo , Receptores de Dopamina D1/metabolismo , Transducción de Señal
18.
BMC Res Notes ; 13(1): 210, 2020 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-32276655

RESUMEN

OBJECTIVE: Compromised brain cholesterol turnover and altered regulation of brain cholesterol metabolism have been allied with some neurodegenerative diseases, including Huntington's disease (HD). Following our previous studies in HD, in this study we aim to investigate in vitro in a neuroblastoma cellular model of HD, the effect of CYP46A1 overexpression, an essential enzyme in cholesterol metabolism, on huntingtin aggregation and levels. RESULTS: We found that CYP46A1 reduces the quantity and size of mutant huntingtin aggregates in cells, as well as the levels of mutant huntingtin protein. Additionally, our results suggest that the observed beneficial effects of CYP46A1 in HD cells are linked to the activation of autophagy. Taken together, our results further demonstrate that CYP46A1 is a pertinent target to counteract HD progression.


Asunto(s)
Autofagia , Colesterol 24-Hidroxilasa/metabolismo , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/metabolismo , Neuroblastoma , Animales , Línea Celular Tumoral , Células Cultivadas , Enfermedad de Huntington/enzimología , Ratones , Proteínas Mutantes
19.
J Neurochem ; 108(6): 1323-35, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19183268

RESUMEN

Drugs of abuse induce neuroadaptations through regulation of gene expression. Although much attention has focused on transcription factor activities, new concepts have recently emerged on the role of chromatin remodelling as a prerequisite for regulation of gene expression in neurons. Thus, for transcription to occur, chromatin must be decondensed, a dynamic process that depends on post-translational modifications of histones. We review here these modifications with a particular emphasis on the role of histone H3 phosphorylation at the promoter of specific genes, including c-fos and c-jun. We trace the signalling pathways involved in H3 phosphorylation and provide evidence for a role of mitogen and stress-activated protein kinase-1 (MSK1) downstream from the MAPK/extracellular-signal regulated kinase (ERK) cascade. In response to cocaine, MSK1 controls an early phase of histone H3 phosphorylation at the c-fos promoter in striatal neurons. MSK1 action may be potentiated by the concomitant inhibition of protein phosphatase 1 by nuclear translocation of dopamine- and cAMP-regulated phosphoprotein Mr = 32 000. H3 phosphorylation by MSK1 is critically involved in c-fos transcription, and cocaine-induced locomotor sensitization. Thus, ERK plays a dual role in gene regulation and drug addiction by direct activation of transcription factors and by chromatin remodelling.


Asunto(s)
Encéfalo/fisiopatología , Ensamble y Desensamble de Cromatina/fisiología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Drogas Ilícitas/farmacología , Transducción de Señal/fisiología , Animales , Encéfalo/efectos de los fármacos , Encéfalo/enzimología , Histonas/metabolismo , Humanos , Fosforilación , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Trastornos Relacionados con Sustancias/patología
20.
FASEB J ; 22(4): 1083-93, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18029446

RESUMEN

Huntington's disease (HD) is a neurodegenerative disorder due to an abnormal polyglutamine expansion in the N-terminal region of huntingtin protein (Exp-Htt). This expansion causes protein aggregation and neuronal dysfunction and death. Transcriptional dysregulation due to Exp-Htt participates in neuronal death in HD. Here, using the R6/2 transgenic mouse model of HD, we identified a new molecular alteration that could account for gene dysregulation in these mice. Despite a nuclear activation of the mitogen-activated protein kinase/extracellular regulated kinase (ERK) along with Elk-1 and cAMP responsive element binding, two transcription factors involved in c-Fos transcription, we failed to detect any histone H3 phosphorylation, which is expected after nuclear ERK activation. Accordingly, we found in the striatum of these mice a deficiency of mitogen- and stress-activated kinase-1 (MSK-1), a kinase downstream ERK, critically involved in H3 phosphorylation and c-Fos induction. We extended this observation to Exp-Htt-expressing striatal neurons and postmortem brains of HD patients. In vitro, knocking out MSK-1 expression potentiated Exp-Htt-induced striatal death. Its overexpression induced H3 phosphorylation and c-Fos expression and totally protected against striatal neurodegeneration induced by Exp-Htt. We propose that MSK-1 deficiency is involved in transcriptional dysregulation and striatal degeneration. Restoration of its expression and activity may be a new therapeutic target in HD.


Asunto(s)
Cuerpo Estriado/enzimología , Expansión de las Repeticiones de ADN , Enfermedad de Huntington/genética , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/genética , Proteínas Quinasas S6 Ribosómicas 90-kDa/deficiencia , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Transcripción Genética , Animales , Cuerpo Estriado/metabolismo , Regulación hacia Abajo , Genes fos , Histonas/metabolismo , Proteína Huntingtina , Enfermedad de Huntington/enzimología , Enfermedad de Huntington/metabolismo , Ratones , Ratones Transgénicos , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/metabolismo , Fosforilación , Proteínas Quinasas S6 Ribosómicas 90-kDa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA