Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 205
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cytotherapy ; 26(7): 749-756, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38506771

RESUMEN

BACKGROUND & AIMS: Cell therapies based on mesenchymal stromal cells (MSCs) have gained an increasing therapeutic interest in the context of multiple disorders. Nonetheless, this field still faces important challenges, particularly concerning suitable manufacturing platforms. Here, we aimed at establishing a scalable culture system to expand umbilical cord-derived Wharton's jelly MSC (MSC(WJ)) and their derived extracellular vesicles (EVs) by using dissolvable microcarriers combined with xeno(geneic)-free culture medium. METHODS: MSC(WJ) isolated from three donors were cultured at a starting density of 1 × 106 cells per spinner flask, i.e., 2.8 × 103 cells per cm2 of dissolvable microcarrier surface area. After a 6-day expansion period of MSC(WJ), extracellular vesicles (EVs) were produced for 24 h. RESULTS: Taking advantage of an intermittent agitation regimen, we observed high adhesion rates to the microcarriers (over 90% at 24 h) and achieved 15.8 ± 0.7-fold expansion after 6 days of culture. Notably, dissolution of the microcarriers was achieved through a pectinase-based solution to recover the cell product, reducing the hurdles of downstream processing. MSC identity was validated by detecting the characteristic MSC immunophenotype and by multilineage differentiation assays. Considering the growing interest in MSC-derived EVs, which are known to be mediators of the therapeutic features of MSC, this platform also was evaluated for EV production. Upon a 24-h period of conditioning, secreted EVs were isolated by ultrafiltration followed by anion-exchange chromatography and exhibited the typical cup-shaped morphology, small size distribution (162.6 ± 30.2 nm) and expressed EV markers (CD63, CD9 and syntenin-1). CONCLUSIONS: Taken together, we established a time-effective and robust scalable platform that complies with clinical-grade standards for the dual production of MSC(WJ) and their derived EV.


Asunto(s)
Técnicas de Cultivo de Célula , Diferenciación Celular , Vesículas Extracelulares , Células Madre Mesenquimatosas , Humanos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Vesículas Extracelulares/metabolismo , Técnicas de Cultivo de Célula/métodos , Células Cultivadas , Proliferación Celular , Cordón Umbilical/citología , Gelatina de Wharton/citología
2.
Biotechnol Bioeng ; 120(9): 2742-2755, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37318000

RESUMEN

The therapeutic effects of human mesenchymal stromal cells (MSC) have been attributed mostly to their paracrine activity, exerted through small-secreted extracellular vesicles (EVs) rather than their engraftment into injured tissues. Currently, the production of MSC-derived EVs (MSC-EVs) is performed in laborious static culture systems with limited manufacturing capacity using serum-containing media. In this work, a serum-/xenogeneic-free microcarrier-based culture system was successfully established for bone marrow-derived MSC cultivation and MSC-EV production using a 2  l-scale controlled stirred tank reactor (STR) operated under fed-batch (FB) or fed-batch combined with continuous perfusion (FB/CP). Overall, maximal cell numbers of (3.0 ± 0.12) × 108 and (5.3 ± 0.32) × 108 were attained at Days 8 and 12 for FB and FB/CP cultures, respectively, and MSC(M) expanded under both conditions retained their immunophenotype. MSC-EVs were identified in the conditioned medium collected from all STR cultures by transmission electron microscopy, and EV protein markers were successfully identified by Western blot analysis. Overall, no significant differences were observed between EVs isolated from MSC expanded in STR operated under the two feeding approaches. EV mean sizes of 163 ± 5.27 nm and 162 ± 4.44 nm (p > 0.05) and concentrations of (2.4 ± 0.35) × 1011 EVs/mL and (3.0 ± 0.48) × 1011 EVs/mL (p > 0.05) were estimated by nanoparticle tracking analysis for FB and FB/CP cultures, respectively. The STR-based platform optimized herein represents a major contribution toward the development of human MSC- and MSC-EV-based products as promising therapeutic agents for Regenerative Medicine settings.


Asunto(s)
Vesículas Extracelulares , Células Madre Mesenquimatosas , Humanos , Técnicas de Cultivo Celular por Lotes , Vesículas Extracelulares/metabolismo , Medicina Regenerativa , Proliferación Celular
3.
Int J Mol Sci ; 24(5)2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36902285

RESUMEN

Today, it is recognized that medicines will eventually be needed during pregnancy to help prevent to, ameliorate or treat an illness, either due to gestation-related medical conditions or pre-existing diseases. Adding to that, the rate of drug prescription to pregnant women has increased over the past few years, in accordance with the increasing trend to postpone childbirth to a later age. However, in spite of these trends, information regarding teratogenic risk in humans is often missing for most of the purchased drugs. So far, animal models have been the gold standard to obtain teratogenic data, but inter-species differences have limited the suitability of those models to predict human-specific outcomes, contributing to misidentified human teratogenicity. Therefore, the development of physiologically relevant in vitro humanized models can be the key to surpassing this limitation. In this context, this review describes the pathway towards the introduction of human pluripotent stem cell-derived models in developmental toxicity studies. Moreover, as an illustration of their relevance, a particular emphasis will be placed on those models that recapitulate two very important early developmental stages, namely gastrulation and cardiac specification.


Asunto(s)
Células Madre Pluripotentes , Teratogénesis , Embarazo , Animales , Femenino , Humanos , Teratógenos/farmacología
4.
Int J Mol Sci ; 24(17)2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37686010

RESUMEN

Bone defect repair remains a critical challenge in current orthopedic clinical practice, as the available therapeutic strategies only offer suboptimal outcomes. Therefore, bone tissue engineering (BTE) approaches, involving the development of biomimetic implantable scaffolds combined with osteoprogenitor cells and native-like physical stimuli, are gaining widespread interest. Electrical stimulation (ES)-based therapies have been found to actively promote bone growth and osteogenesis in both in vivo and in vitro settings. Thus, the combination of electroactive scaffolds comprising conductive biomaterials and ES holds significant promise in improving the effectiveness of BTE for clinical applications. The aim of this study was to develop electroconductive polyacrylonitrile/poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PAN/PEDOT:PSS) nanofibers via electrospinning, which are capable of emulating the native tissue's fibrous extracellular matrix (ECM) and providing a platform for the delivery of exogenous ES. The resulting nanofibers were successfully functionalized with apatite-like structures to mimic the inorganic phase of the bone ECM. The conductive electrospun scaffolds presented nanoscale fiber diameters akin to those of collagen fibrils and displayed bone-like conductivity. PEDOT:PSS incorporation was shown to significantly promote scaffold mineralization in vitro. The mineralized electroconductive nanofibers demonstrated improved biological performance as observed by the significantly enhanced proliferation of both human osteoblast-like MG-63 cells and human bone marrow-derived mesenchymal stem/stromal cells (hBM-MSCs). Moreover, mineralized PAN/PEDOT:PSS nanofibers up-regulated bone marker genes expression levels of hBM-MSCs undergoing osteogenic differentiation, highlighting their potential as electroactive biomimetic BTE scaffolds for innovative bone defect repair strategies.


Asunto(s)
Nanofibras , Osteogénesis , Humanos , Huesos
5.
Int J Mol Sci ; 23(24)2022 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-36555427

RESUMEN

Human iPSC-derived self-organized cardiac tissues can be valuable for the development of platforms for disease modeling and drug screening, enhancing test accuracy and reducing pharmaceutical industry financial burden. However, current differentiation systems still rely on static culture conditions and specialized commercial microwells for aggregation, which hinders the full potential of hiPSC-derived cardiac tissues. Herein, we integrate cost-effective and reproducible manual aggregation of hiPSC-derived cardiac progenitors with Matrigel encapsulation and a dynamic culture to support hiPSC cardiac differentiation and self-organization. Manual aggregation at day 7 of cardiac differentiation resulted in 97% of beating aggregates with 78% of cTnT-positive cells. Matrigel encapsulation conjugated with a dynamic culture promoted cell migration and the creation of organized structures, with observed cell polarization and the creation of lumens. In addition, encapsulation increased buoyancy and decreased coalescence of the hiPSC-derived cardiac aggregates. Moreover, VEGF supplementation increased over two-fold the percentage of CD31-positive cells resulting in the emergence of microvessel-like structures. Thus, this study shows that the explored culture parameters support the self-organization of hiPSC-derived cardiac microtissues containing multiple cardiac cell types. Additional stimuli (e.g., BMP) in long-term scalable and fully automatized cultures can further potentiate highly structured and mature hiPSC-derived cardiac models, contributing to the development of reliable platforms for high-throughput drug screening and disease modeling.


Asunto(s)
Células Madre Pluripotentes Inducidas , Miocitos Cardíacos , Humanos , Miocitos Cardíacos/metabolismo , Células Cultivadas , Análisis Costo-Beneficio , Colágeno/metabolismo , Diferenciación Celular
6.
J Gene Med ; 23(7): e3342, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33870576

RESUMEN

BACKGROUND: Mesenchymal stromal cells (MSC) have been exploited for the treatment of ischemic diseases given their angiogenic potential. Despite bone marrow (BM) being the most studied tissue source, cells with similar intrinsic properties can be isolated from adipose tissue (AT) and umbilical cord matrix (UCM). The present study aims to compare the angiogenic potential of MSC obtained from BM, AT and UCM that were genetically modified with vascular endothelial growth factor (VEGF)-encoding minicircle (MC) vectors. The overexpression of VEGF combined with the intrinsic properties of MSC could represent a promising strategy towards angiogenic therapies. METHODS: We established a microporation-based protocol to transfect human MSC using VEGF-encoding MC (MC-VEGF). VEGF production levels were measured by an enzyme-linked immunosorbent assay and a quantitative polymerase chain reaction. The in vitro angiogenic potential of transfected cells was quantified using cell tube formation and migration functional studies. RESULTS: MSC isolated from BM, AT or UCM showed similar levels of VEGF secretion after transfection with MC-VEGF. Those values were significantly higher when compared to non-transfected cells, indicating an effective enhancement of VEGF production. Transfected cells displayed higher in vitro angiogenic potential than non-transfected controls, as demonstrated by functional in vitro assays. No significant differences were observed among cells from different sources. CONCLUSIONS: Minicircles can be successfully used to transiently overexpress VEGF in human MSC, regardless of the cell tissue source, representing an important advantage in a clinical context (i.e., angiogenic therapy) because a standard protocol might be applied to MSC of different tissue sources, which can be differentially selected according to the application (e.g., autologous versus allogeneic settings).


Asunto(s)
Células Madre Mesenquimatosas/metabolismo , Factores de Crecimiento Endotelial Vascular/metabolismo , Tejido Adiposo/metabolismo , Médula Ósea/metabolismo , Diferenciación Celular , Movimiento Celular , Proliferación Celular , Células Cultivadas , Expresión Génica , Humanos , Neovascularización Fisiológica , Transfección/métodos , Cordón Umbilical/metabolismo
7.
Stem Cells ; 38(8): 1007-1019, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32352186

RESUMEN

Regulatory T cells (Treg) play a critical role in immune tolerance. The scarcity of Treg therapy clinical trials in humans has been largely due to the difficulty in obtaining sufficient Treg numbers. We performed a preclinical investigation on the potential of mesenchymal stromal cells (MSCs) to expand Treg in vitro to support future clinical trials. Human peripheral blood mononuclear cells from healthy donors were cocultured with allogeneic bone marrow-derived MSCs expanded under xenogeneic-free conditions. Our data show an increase in the counts and frequency of CD4+ CD25high Foxp3+ CD127low Treg cells (4- and 6-fold, respectively) after a 14-day coculture. However, natural Treg do not proliferate in coculture with MSCs. When purified conventional CD4 T cells (Tcon) are cocultured with MSCs, only cells that acquire a Treg-like phenotype proliferate. These MSC-induced Treg-like cells also resemble Treg functionally, since they suppress autologous Tcon proliferation. Importantly, the DNA methylation profile of MSC-induced Treg-like cells more closely resembles that of natural Treg than of Tcon, indicating that this population is stable. The expression of PD-1 is higher in Treg-like cells than in Tcon, whereas the frequency of PDL-1 increases in MSCs after coculture. TGF-ß levels are also significantly increased MSC cocultures. Overall, our data suggest that Treg enrichment by MSCs results from Tcon conversion into Treg-like cells, rather than to expansion of natural Treg, possibly through mechanisms involving TGF-ß and/or PD-1/PDL-1 expression. This MSC-induced Treg population closely resembles natural Treg in terms of phenotype, suppressive ability, and methylation profile.


Asunto(s)
Linfocitos T CD4-Positivos/citología , Células Madre Mesenquimatosas/citología , Linfocitos T Reguladores/citología , Linfocitos T CD4-Positivos/metabolismo , Metilación de ADN , Humanos , Células Madre Mesenquimatosas/metabolismo , Linfocitos T Reguladores/metabolismo
8.
Biotechnol Bioeng ; 118(7): 2781-2803, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33871054

RESUMEN

Human-induced pluripotent stem cells (iPSCs) have great potential for disease modeling. However, generating iPSC-derived models to study brain diseases remains a challenge. In particular, the ability to recapitulate cerebellar development in vitro is still limited. We presented a reproducible and scalable production of cerebellar organoids by using the novel single-use Vertical-Wheel bioreactors, in which functional cerebellar neurons were obtained. Here, we evaluate the global gene expression profiles by RNA sequencing (RNA-seq) across cerebellar differentiation, demonstrating a faster cerebellar commitment in this novel dynamic differentiation protocol. Furthermore, transcriptomic profiles suggest a significant enrichment of extracellular matrix (ECM) in dynamic-derived cerebellar organoids, which can better mimic the neural microenvironment and support a consistent neuronal network. Thus, an efficient generation of organoids with cerebellar identity was achieved for the first time in a continuous process using a dynamic system without the need of organoids encapsulation in ECM-based hydrogels, allowing the possibility of large-scale production and application in high-throughput processes. The presence of factors that favors angiogenesis onset was also detected in dynamic conditions, which can enhance functional maturation of cerebellar organoids. We anticipate that large-scale production of cerebellar organoids may help developing models for drug screening, toxicological tests, and studying pathological pathways involved in cerebellar degeneration.


Asunto(s)
Cerebelo/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Organoides/metabolismo , RNA-Seq , Cerebelo/citología , Matriz Extracelular/metabolismo , Humanos , Hidrogeles/química , Células Madre Pluripotentes Inducidas/citología , Organoides/citología
9.
Sci Technol Adv Mater ; 22(1): 461-480, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34248420

RESUMEN

The growing prevalence of vascular diseases worldwide has emphasized the need for novel tissue-engineered options concerning the development of vascularized 3D constructs. This study reports, for the first time, the use of external magnetic fields to stimulate mesenchymal stromal cells (MSCs) to increase the production of vascular endothelial growth factor-A (VEGF-A). Polyvinylalcohol and gelatin-based scaffolds, containing iron oxide nanoparticles, were designed for optimal cell magnetic stimulation. While the application of static magnetic fields over 24 h did not impact on MSCs proliferation, viability and phenotypic identity, it significantly increased the production of VEGF-A and guided MSCs morphology and alignment. The ability to enhance MSCs angiogenic potential was demonstrated by the increase in the number of new vessels formed in the presence of MSCs conditioned media through in vitro and in vivo models. Ultimately, this study uncovers the potential to manipulate cellular processes through short-term magnetic stimulation.

10.
Int J Mol Sci ; 22(7)2021 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-33916879

RESUMEN

Rett syndrome (RTT) is a neurodevelopmental disorder caused by mutations in the gene encoding the methyl-CpG-binding protein 2 (MeCP2). Among many different roles, MeCP2 has a high phenotypic impact during the different stages of brain development. Thus, it is essential to intensively investigate the function of MeCP2, and its regulated targets, to better understand the mechanisms of the disease and inspire the development of possible therapeutic strategies. Several animal models have greatly contributed to these studies, but more recently human pluripotent stem cells (hPSCs) have been providing a promising alternative for the study of RTT. The rapid evolution in the field of hPSC culture allowed first the development of 2D-based neuronal differentiation protocols, and more recently the generation of 3D human brain organoid models, a more complex approach that better recapitulates human neurodevelopment in vitro. Modeling RTT using these culture platforms, either with patient-specific human induced pluripotent stem cells (hiPSCs) or genetically-modified hPSCs, has certainly contributed to a better understanding of the onset of RTT and the disease phenotype, ultimately allowing the development of high throughput drugs screening tests for potential clinical translation. In this review, we first provide a brief summary of the main neurological features of RTT and the impact of MeCP2 mutations in the neuropathophysiology of this disease. Then, we provide a thorough revision of the more recent advances and future prospects of RTT modeling with human neural cells derived from hPSCs, obtained using both 2D and organoids culture systems, and its contribution for the current and future clinical trials for RTT.


Asunto(s)
Células Madre Pluripotentes Inducidas , Proteína 2 de Unión a Metil-CpG , Modelos Neurológicos , Mutación , Organoides , Síndrome de Rett , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , Proteína 2 de Unión a Metil-CpG/genética , Proteína 2 de Unión a Metil-CpG/metabolismo , Organoides/metabolismo , Organoides/patología , Síndrome de Rett/genética , Síndrome de Rett/metabolismo , Síndrome de Rett/patología
11.
J Cell Physiol ; 235(10): 7496-7515, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32162324

RESUMEN

Noncollagenous proteins in the bone extracellular matrix, such as osteocalcin (OC) and osteopontin (OPN), inherent to evolution of bone as a skeletal tissue, are known to regulate bone formation and mineralization. However, the fundamental basis of this regulatory role remains unknown. Here, for the first time, we use mouse mesenchymal stem/stromal cells (MSC) lacking both OC and OPN to investigate the mechanistic roles of OC and OPN on the proliferation capacity and differentiation ability of MSC. We found that the loss of OC and OPN reduces stem cells self-renewal potential and multipotency, affects their differentiation into an osteogenic lineage, and impairs their angiogenic potential while maintaining chondrogenic and adipogenic lineages. Moreover, loss of OC and OPN compromises the extracellular matrix integrity and maturation, observed by an unexpected enhancement of glycosaminoglycans content that are associated with a more primitive skeletal connective tissue, and by a delay on the maturation of mineral species produced. Interestingly, exogenously supplemented OC and OPN were able to rescue MSC proliferative and osteogenic potential along with matrix integrity and mineral quality. Taken together, these results highlight the key contributions of OC and OPN in enhancing osteogenesis and angiogenesis over primitive connective tissue, and support a potential therapeutic approach based on their exogenous supplementation.


Asunto(s)
Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/fisiología , Neovascularización Fisiológica/fisiología , Osteocalcina/metabolismo , Osteogénesis/fisiología , Osteopontina/metabolismo , Adipogénesis/fisiología , Animales , Huesos/metabolismo , Huesos/fisiología , Diferenciación Celular/fisiología , Proliferación Celular/fisiología , Células Cultivadas , Tejido Conectivo/metabolismo , Tejido Conectivo/fisiología , Matriz Extracelular/metabolismo , Ratones , Ratones Endogámicos C57BL , Morfogénesis/fisiología
12.
J Cell Physiol ; 235(10): 7224-7238, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32037550

RESUMEN

Mesenchymal stromal cells (MSCs) have been widely exploited for the treatment of several conditions due to their intrinsic regenerative and immunomodulatory properties. MSC have demonstrated to be particularly relevant for the treatment of ischemic diseases, where MSC-based therapies can stimulate angiogenesis and induce tissue regeneration. Regardless of the condition targeted, recent analyses of MSC-based clinical trials have demonstrated limited benefits indicating a need to improve the efficacy of this cell product. Preconditioning MSC ex vivo through microenvironment modulation was found to improve MSC survival rate and thus prolong their therapeutic effect. This workstudy aims at enhancing the in vitro angiogenic capacity of a potential MSC-based medicinal product by comparing different sources of MSC and culture conditions. MSC from three different sources (bone marrow [BM], adipose tissue [AT], and umbilical cord matrix [UCM]) were cultured with xenogeneic-/serum-free culture medium under static conditions and their angiogenic potential was studied. Results indicated a higher in vitro angiogenic capacity of UCM MSC, compared with cells derived from BM and AT. Physicochemical preconditioning of UCM MSC through a microcarrier-based culture platform and low oxygen concentration (2% O2 , compared with atmospheric air) increased the in vitro angiogenic potential of the cultured cells. Envisaging the clinical manufacturing of an allogeneic, off-the-shelf MSC-based product, preconditioned UCM MSC maintain the angiogenic gene expression profile upon cryopreservation and delivery processes in the conditions of our study. These results are expected to contribute to the development of MSC-based therapies in the context of angiogenesis.


Asunto(s)
Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/fisiología , Neovascularización Fisiológica , Tejido Adiposo/citología , Células de la Médula Ósea/citología , Diferenciación Celular , Proliferación Celular , Separación Celular , Células Cultivadas , Microambiente Celular/fisiología , Criopreservación , Medio de Cultivo Libre de Suero , Humanos , Inmunofenotipificación , Técnicas In Vitro , Neovascularización Fisiológica/genética , Oxígeno , Transcriptoma , Cordón Umbilical/citología
13.
Glycoconj J ; 37(3): 345-360, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32086666

RESUMEN

Glycosaminoglycans (GAGs) are major components of cartilage extracellular matrix (ECM), which play an important role in tissue homeostasis not only by providing mechanical load resistance, but also as signaling mediators of key cellular processes such as adhesion, migration, proliferation and differentiation. Specific GAG types as well as their disaccharide sulfation patterns can be predictive of the tissue maturation level but also of disease states such as osteoarthritis. In this work, we used a highly sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) method to perform a comparative study in terms of temporal changes in GAG and disaccharide composition between tissues generated from human bone marrow- and synovial-derived mesenchymal stem/stromal cells (hBMSC/hSMSC) after chondrogenic differentiation under normoxic (21% O2) and hypoxic (5% O2) micromass cultures. The chondrogenic differentiation of hBMSC/hSMSC cultured under different oxygen tensions was assessed through aggregate size measurement, chondrogenic gene expression analysis and histological/immunofluorescence staining in comparison to human chondrocytes. For all the studied conditions, the compositional analysis demonstrated a notable increase in the average relative percentage of chondroitin sulfate (CS), the main GAG in cartilage composition, throughout MSC chondrogenic differentiation. Additionally, hypoxic culture conditions resulted in significantly different average GAG and CS disaccharide percentage compositions compared to the normoxic ones. However, such effect was considerably more evident for hBMSC-derived chondrogenic aggregates. In summary, the GAG profiles described here may provide new insights for the prediction of cartilage tissue differentiation/disease states and to characterize the quality of MSC-generated chondrocytes obtained under different oxygen tension culture conditions.


Asunto(s)
Glicosaminoglicanos , Células Madre Mesenquimatosas , Médula Ósea , Diferenciación Celular , Células Cultivadas , Condrocitos/metabolismo , Sulfatos de Condroitina/metabolismo , Cromatografía Liquida , Disacáridos/metabolismo , Glicosaminoglicanos/metabolismo , Humanos , Hipoxia/metabolismo , Células Madre Mesenquimatosas/metabolismo , Oxígeno/metabolismo , Espectrometría de Masas en Tándem
14.
Biotechnol Bioeng ; 117(12): 3739-3756, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32725885

RESUMEN

Developing technologies for scalable production of human organoids has gained increased attention for "organoid medicine" and drug discovery. We developed a scalable and integrated differentiation process for generation of hepatic organoid from human pluripotent stem cells (hPSCs) in a fully controlled stirred tank bioreactor with 150 ml working volume by application of physiological oxygen concentrations in different liver tissue zones. We found that the 20-40% dissolved oxygen concentration [DO] (corresponded to 30-60 mmHg pO2 within the liver tissue) significantly influences the process outcome via regulating the differentiation fate of hPSC aggregates by enhancing mesoderm induction. Regulation of the [DO] at 30% DO resulted in efficient generation of human fetal-like hepatic organoids that had a uniform size distribution and were comprised of red blood cells and functional hepatocytes, which exhibited improved liver-specific marker gene expressions, key liver metabolic functions, and, more important, higher inducible cytochrome P450 activity compared to the other trials. These hepatic organoids were successfully engrafted in an acute liver injury mouse model and produced albumin after implantation. These results demonstrated the significant impact of the dissolved oxygen concentration on hPSC hepatic differentiation fate and differentiation efficacy that should be considered ascritical translational aspect of established scalable liver organoid generation protocols for potential clinical and drug discovery applications.


Asunto(s)
Reactores Biológicos , Hígado/metabolismo , Organoides/metabolismo , Oxígeno , Células Madre Pluripotentes/metabolismo , Humanos , Hígado/citología , Organoides/citología , Oxígeno/metabolismo , Oxígeno/farmacología , Células Madre Pluripotentes/citología
15.
Mol Ther ; 27(1): 272-280, 2019 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-30391141

RESUMEN

Chimeric antigen receptor (CAR) T cell therapy for the treatment of acute myeloid leukemia (AML) has the risk of toxicity to normal myeloid cells. CD7 is expressed by the leukemic blasts and malignant progenitor cells of approximately 30% of AML patients but is absent on normal myeloid and erythroid cells. Since CD7 expression by malignant blasts is also linked with chemoresistance and poor outcomes, targeting this antigen may be beneficial for this subset of AML patients. Here, we show that expression of a CD7-directed CAR in CD7 gene-edited (CD7KO) T cells effectively eliminates CD7+ AML cell lines, primary CD7+ AML, and colony-forming cells but spares myeloid and erythroid progenitor cells and their progeny. In a xenograft model, CD7 CAR T cells protect mice against systemic leukemia, prolonging survival. Our results support the feasibility of using CD7KO CD7 CAR T cells for the non-myeloablative treatment of CD7+ AML.


Asunto(s)
Inmunoterapia Adoptiva/métodos , Leucemia Mieloide Aguda/terapia , Animales , Antígenos CD7/metabolismo , Humanos , Leucemia Mieloide Aguda/metabolismo , Ratones , Células Mieloides/metabolismo , Linfocitos T/metabolismo
16.
J Cell Physiol ; 234(4): 3973-3984, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30146686

RESUMEN

Mesenchymal stromal cells (MSC) isolated from synovial tissues constitute a novel source of stem-like cells with promising applications in cartilage regeneration and potentially in other regenerative medicine and tissue-engineering settings. Detailed characterization of these cells is lacking, thus compromising their full potential. Here we present the detailed characterization of the ex vivo expansion of synovium-derived stromal cells collected by three different biopsy methods: synovium-direct biopsy, arthroscopic trocar shaver blade filtrate, and cells isolated from synovial fluid (SF) samples. Isolation success rates were >75% for all sources. MSC obtained from the different samples displayed the characteristic immunophenotype of adult MSC, expressing CD73, CD90, and CD105. Arthroscopic shaver blade-derived cells showed the higher proliferation capacity measured by the fold increase (FI) in total cell number over several passages and considering their cumulative population doublings (CPD; 15 ± 0.85 vs. 13 ± 0.73 for synovium vs. 11 ± 0.97 for SF). Also, these cells were able to sustain an increased proliferation under hypoxic (2% O2 ) conditions (FI 55 ± 4 vs. 37 ± 7) after 17 days in culture. Expanded cells were able to differentiate successfully along the osteogenic, adipogenic, and chondrogenic lineages in vitro. Overall, these results demonstrate that synovial tissues represent a promising source for the isolation of human MSC, while depicting the variability associated to the biopsy method used, which impact cell behavior in vitro.


Asunto(s)
Diferenciación Celular , Linaje de la Célula , Proliferación Celular , Separación Celular/métodos , Células Madre Mesenquimatosas/fisiología , Líquido Sinovial/citología , Membrana Sinovial/citología , Adulto , Anciano , Biomarcadores/metabolismo , Biopsia , Técnicas de Cultivo de Célula , Hipoxia de la Célula , Células Cultivadas , Femenino , Humanos , Cinética , Masculino , Células Madre Mesenquimatosas/metabolismo , Persona de Mediana Edad , Fenotipo , Adulto Joven
17.
Glycoconj J ; 36(2): 141-154, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30637588

RESUMEN

The extracellular matrix (ECM) is a highly dynamic and complex meshwork of proteins and glycosaminoglycans (GAGs) with a crucial role in tissue homeostasis and organization not only by defining tissue architecture and mechanical properties, but also by providing chemical cues that regulate major biological processes. GAGs are associated with important physiological functions, acting as modulators of signaling pathways regulating several cellular processes such as cell growth and differentiation. Recently, in vitro fabricated cell-derived ECM have emerged as promising materials for regenerative medicine due to their ability of better recapitulate the native ECM-like composition and structure, without the limitations of availability and pathogen transfer risks of tissue-derived ECM scaffolds. However, little is known about the molecular and more specifically, GAG composition of these cell-derived ECM. In this study, three different cell-derived ECM were produced in vitro and characterized in terms of their GAG content, composition and sulfation patterns using a highly sensitive liquid chromatography-tandem mass spectrometry technique. Distinct GAG compositions and disaccharide sulfation patterns were verified for the different cell-derived ECM. Additionally, the effect of decellularization method on the GAG and disaccharide relative composition was also assessed. In summary, the method presented here offers a novel approach to determine the GAG composition of cell-derived ECM, which we believe is critical for a better understanding of ECM role in directing cellular responses and has the potential for generating important knowledge to use in the development of novel ECM-like biomaterials for tissue engineering applications.


Asunto(s)
Condrocitos/metabolismo , Matriz Extracelular/metabolismo , Glicosaminoglicanos/metabolismo , Adulto , Células Cultivadas , Matriz Extracelular/química , Glicosaminoglicanos/análisis , Humanos , Masculino
18.
Curr Diab Rep ; 19(9): 75, 2019 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-31375935

RESUMEN

PURPOSE OF REVIEW: Type 1 diabetes impacts 1.3 million people in the USA with a total direct lifetime medical cost of $133.7 billion. Management requires a mix of daily exogenous insulin administration and frequent glucose monitoring. Decision-making by the individual can be burdensome. RECENT FINDINGS: Beta-cell replacement, which involves devices protecting cells from autoimmunity and allo-rejection, aims at restoring physiological glucose regulation and improving clinical outcomes in patients. Given the significant burden of T1D in the healthcare systems, cost-effectiveness analyses can drive innovation and policymaking in the area. This review presents the health economics analyses performed for donor-derived islet transplantation and the possible outcomes of stem cell-derived beta cells. Long-term cost-effectiveness of islet transplantation depends on the engraftment of these transplants, and the expenses and thresholds assumed by healthcare systems in different countries. Early health technology assessment analyses for stem cell-derived beta-cell replacement suggest manufacturing optimization is necessary to reduce upfront costs.


Asunto(s)
Diabetes Mellitus Tipo 1/cirugía , Células Secretoras de Insulina/trasplante , Trasplante de Islotes Pancreáticos/economía , Trasplante de Islotes Pancreáticos/métodos , Glucemia/análisis , Automonitorización de la Glucosa Sanguínea , Análisis Costo-Beneficio , Diabetes Mellitus Tipo 1/sangre , Diabetes Mellitus Tipo 1/economía , Humanos
19.
Biochem Biophys Res Commun ; 499(3): 611-617, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29601816

RESUMEN

Human induced Pluripotent Stem Cell-derived cardiomyocytes (hiPSC-CMs) have an enormous potential for the development of drug screening and modeling cardiac disease platforms. However, early hiPSC-CMs usually exhibit low structural development, precluding the applicability of these cells. Here, we follow during 120 days the progressive structural maturation of hiPSC-CM microtissues obtained using the Wnt signaling modulation protocol. For this purpose, we designed a user friendly custom-written program to quantify cardiac fiber alignment and sarcomere length. Cardiomyocyte shape, cardiac fiber density and multinucleation were also analyzed. Derived cardiomyocytes showed significant progression in cardiomyocyte fiber density and sarcomere length during the long-term culture, with a peak at day 90 of 40% multinucleated cells. In addition, cardiomyocyte microtissues remained functional with progressive maturation leading to a decrease in the percentage of cTnT positive cells from 59% to 22% at day 120, a value similar to the content present in tissues of the adult left ventricle. These data and the framework that we provide to quantify cardiomyocyte structural features can be important to set new metrics to develop applications for drug screening and disease modeling.


Asunto(s)
Fenómenos Biofísicos , Células Madre Pluripotentes Inducidas/citología , Miocitos Cardíacos/citología , Técnicas de Cultivo de Tejidos/métodos , Diferenciación Celular , Células Cultivadas , Humanos , Miocardio/citología , Sarcómeros/metabolismo , Programas Informáticos , Factores de Tiempo
20.
Stem Cells ; 32(11): 2824-32, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25078438

RESUMEN

Genomic instability is recognized as one of the most important hurdles in the expanding field of stem cell-based therapies. In the recent years, an accumulating body of evidence has shown that human stem cells undergo a diverse program of biological changes upon ex vivo cultivation that include numerical and structural chromosomal abnormalities, point mutations, variation of telomere length, and epigenetic instability. As the field moves forward, the growing awareness of the risk factors associated with human genome plasticity strongly advocates for the use of extensive genetic screening as part of a quality control platform to attest to the safety of stem cell-based products. Here we present a timely and comprehensive review that addresses the current status and emerging trends of the field, ultimately underscoring the need to implement new regulatory standards able to streamline the route to therapeutic applications.


Asunto(s)
Diferenciación Celular/genética , Aberraciones Cromosómicas , Inestabilidad Genómica/genética , Células Madre Pluripotentes Inducidas/citología , Trasplante de Células Madre , Animales , Humanos , Trasplante de Células Madre/métodos , Telómero/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA