Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Phys Rev Lett ; 131(4): 046401, 2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37566843

RESUMEN

The recent observation of correlated phases in transition metal dichalcogenide moiré systems at integer and fractional filling promises new insight into metal-insulator transitions and the unusual states of matter that can emerge near such transitions. Here, we combine real- and momentum-space mapping techniques to study moiré superlattice effects in 57.4° twisted WSe_{2} (tWSe_{2}). Our data reveal a split-off flat band that derives from the monolayer Γ states. Using advanced data analysis, we directly quantify the moiré potential from our data. We further demonstrate that the global valence band maximum in tWSe_{2} is close in energy to this flat band but derives from the monolayer K states which show weaker superlattice effects. These results constrain theoretical models and open the perspective that Γ-valley flat bands might be involved in the correlated physics of twisted WSe_{2}.

2.
Phys Rev Lett ; 131(23): 236502, 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38134803

RESUMEN

We study the temperature evolution of quasiparticles in the correlated metal Sr_{2}RuO_{4}. Our angle resolved photoemission data show that quasiparticles persist up to temperatures above 200 K, far beyond the Fermi liquid regime. Extracting the quasiparticle self-energy, we demonstrate that the quasiparticle residue Z increases with increasing temperature. Quasiparticles eventually disappear on approaching the bad metal state of Sr_{2}RuO_{4} not by losing weight but via excessive broadening from super-Planckian scattering. We further show that the Fermi surface of Sr_{2}RuO_{4}-defined as the loci where the spectral function peaks-deflates with increasing temperature. These findings are in semiquantitative agreement with dynamical mean field theory calculations.

3.
Phys Rev Lett ; 126(17): 176403, 2021 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-33988442

RESUMEN

Using angle-resolved photoelectron spectroscopy (ARPES), we investigate the surface electronic structure of the magnetic van der Waals compounds MnBi_{4}Te_{7} and MnBi_{6}Te_{10}, the n=1 and 2 members of a modular (Bi_{2}Te_{3})_{n}(MnBi_{2}Te_{4}) series, which have attracted recent interest as intrinsic magnetic topological insulators. Combining circular dichroic, spin-resolved and photon-energy-dependent ARPES measurements with calculations based on density functional theory, we unveil complex momentum-dependent orbital and spin textures in the surface electronic structure and disentangle topological from trivial surface bands. We find that the Dirac-cone dispersion of the topologial surface state is strongly perturbed by hybridization with valence-band states for Bi_{2}Te_{3}-terminated surfaces but remains preserved for MnBi_{2}Te_{4}-terminated surfaces. Our results firmly establish the topologically nontrivial nature of these magnetic van der Waals materials and indicate that the possibility of realizing a quantized anomalous Hall conductivity depends on surface termination.

4.
Phys Rev Lett ; 124(10): 106402, 2020 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-32216410

RESUMEN

We report high-resolution angle-resolved photoemission measurements on single crystals of Pt_{2}HgSe_{3} grown by high-pressure synthesis. Our data reveal a gapped Dirac nodal line whose (001) projection separates the surface Brillouin zone in topological and trivial areas. In the nontrivial k-space range, we find surface states with multiple saddle points in the dispersion, resulting in two van Hove singularities in the surface density of states. Based on density-functional theory calculations, we identify these surface states as signatures of a topological crystalline state, which coexists with a weak topological phase.

5.
Phys Chem Chem Phys ; 22(7): 3965-3974, 2020 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-32022040

RESUMEN

The photoelectron spectra of both liquid and gas phase aromatic molecules are reported. The spectra were obtained using a 34.1 eV source produced by high harmonic generation and analysed with the help of high-level ab initio simulations using the reflection principle combined with path integral molecular dynamics simulations accounting for nuclear quantum effects for the gas phase. We demonstrate the suitability of three trimethylbenzenes (1,3,5-trimethylbenzene, 1,2,3-trimethylbenzene and 1,2,4-trimethylbenzene) as a solvent for liquid photoelectron spectroscopy of solute species. We also discuss the electrokinetic charging of a non-polar liquid jet.

6.
Phys Rev Lett ; 121(7): 077205, 2018 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-30169049

RESUMEN

Femtosecond laser excitations in half-metal (HM) compounds are theoretically predicted to induce an exotic picosecond spin dynamics. In particular, conversely to what is observed in conventional metals and semiconductors, the thermalization process in HMs leads to a long living partially thermalized configuration characterized by three Fermi-Dirac distributions for the minority, majority conduction, and majority valence electrons, respectively. Remarkably, these distributions have the same temperature but different chemical potentials. This unusual thermodynamic state is causing a persistent nonequilibrium spin polarization only well above the Fermi energy. Femtosecond spin dynamics experiments performed on Fe_{3}O_{4} by time- and spin-resolved photoelectron spectroscopy support our model. Furthermore, the spin polarization response proves to be very robust and it can be adopted to selectively test the bulk HM character in a wide range of compounds.

7.
Phys Rev Lett ; 118(13): 139902, 2017 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-28409949

RESUMEN

This corrects the article DOI: 10.1103/PhysRevLett.117.163002.

8.
Phys Rev Lett ; 117(16): 163002, 2016 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-27792360

RESUMEN

Hydrogen bonding interactions between biological chromophores and their surrounding protein and solvent environment significantly affect the photochemical pathways of the chromophore and its biological function. A common first step in the dynamics of these systems is excited state proton transfer between the noncovalently bound molecules, which stabilizes the system against dissociation and principally alters relaxation pathways. Despite such fundamental importance, studying excited state proton transfer across a hydrogen bond has proven difficult, leaving uncertainties about the mechanism. Through time-resolved photoelectron imaging measurements, we demonstrate how the addition of a single hydrogen bond and the opening of an excited state proton transfer channel dramatically changes the outcome of a photochemical reaction, from rapid dissociation in the isolated chromophore to efficient stabilization and ground state recovery in the hydrogen bonded case, and uncover the mechanism of excited state proton transfer at a hydrogen bond, which follows sequential hydrogen and charge transfer processes.

9.
Phys Rev Lett ; 117(27): 277201, 2016 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-28084758

RESUMEN

We report the spin-selective optical excitation of carriers in inversion-symmetric bulk samples of the transition metal dichalcogenide (TMDC) WSe_{2}. Employing time- and angle-resolved photoelectron spectroscopy (trARPES) and complementary time-dependent density functional theory (TDDFT), we observe spin-, valley-, and layer-polarized excited state populations upon excitation with circularly polarized pump pulses, followed by ultrafast (<100 fs) scattering of carriers towards the global minimum of the conduction band. TDDFT reveals the character of the conduction band, into which electrons are initially excited, to be two-dimensional and localized within individual layers, whereas at the minimum of the conduction band, states have a three-dimensional character, facilitating interlayer charge transfer. These results establish the optical control of coupled spin-, valley-, and layer-polarized states in centrosymmetric materials with locally broken symmetries and suggest the suitability of TMDC multilayer and heterostructure materials for valleytronic and spintronic device concepts.

10.
Phys Rev Lett ; 115(8): 086803, 2015 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-26340199

RESUMEN

Direct and inverse Auger scattering are amongst the primary processes that mediate the thermalization of hot carriers in semiconductors. These two processes involve the annihilation or generation of an electron-hole pair by exchanging energy with a third carrier, which is either accelerated or decelerated. Inverse Auger scattering is generally suppressed, as the decelerated carriers must have excess energies higher than the band gap itself. In graphene, which is gapless, inverse Auger scattering is, instead, predicted to be dominant at the earliest time delays. Here, <8 fs extreme-ultraviolet pulses are used to detect this imbalance, tracking both the number of excited electrons and their kinetic energy with time-and angle-resolved photoemission spectroscopy. Over a time window of approximately 25 fs after absorption of the pump pulse, we observe an increase in conduction band carrier density and a simultaneous decrease of the average carrier kinetic energy, revealing that relaxation is in fact dominated by inverse Auger scattering. Measurements of carrier scattering at extreme time scales by photoemission will serve as a guide to ultrafast control of electronic properties in solids for petahertz electronics.

11.
Phys Rev Lett ; 114(9): 097401, 2015 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-25793848

RESUMEN

The prospect of optically inducing and controlling a spin-polarized current in spintronic devices has generated wide interest in the out-of-equilibrium electronic and spin structure of topological insulators. In this Letter we show that only measuring the spin intensity signal over several orders of magnitude by spin-, time-, and angle-resolved photoemission spectroscopy can provide a comprehensive description of the optically excited electronic states in Bi_{2}Se_{3}. Our experiments reveal the existence of a surface resonance state in the second bulk band gap that is benchmarked by fully relativistic ab initio spin-resolved photoemission calculations. We propose that the newly reported state plays a major role in the ultrafast dynamics of the system, acting as a bottleneck for the interaction between the topologically protected surface state and the bulk conduction band. In fact, the spin-polarization dynamics in momentum space show that these states display macroscopically different temperatures and, more importantly, different cooling rates over several picoseconds.

12.
Nat Commun ; 15(1): 4581, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38811546

RESUMEN

The anomalous strange metal phase found in high-Tc cuprates does not follow the conventional condensed-matter principles enshrined in the Fermi liquid and presents a great challenge for theory. Highly precise experimental determination of the electronic self-energy can provide a test bed for theoretical models of strange metals, and angle-resolved photoemission can provide this as a function of frequency, momentum, temperature and doping. Here we show that constant energy cuts through the nodal spectral function in (Pb,Bi)2Sr2-xLaxCuO6+δ have a non-Lorentzian lineshape, consistent with a self-energy that is k dependent. This provides a new test for aspiring theories. Here we show that the experimental data are captured remarkably well by a power law with a k-dependent scaling exponent smoothly evolving with doping, a description that emerges naturally from anti-de Sitter/conformal-field-theory based semi-holography. This puts a spotlight on holographic methods for the quantitative modelling of strongly interacting quantum materials like the cuprate strange metals.

13.
Nat Commun ; 14(1): 7396, 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-37978297

RESUMEN

Antiferromagnetic (AF) topological materials offer a fertile ground to explore a variety of quantum phenomena such as axion magnetoelectric dynamics and chiral Majorana fermions. To realize such intriguing states, it is essential to establish a direct link between electronic states and topology in the AF phase, whereas this has been challenging because of the lack of a suitable materials platform. Here we report the experimental realization of the AF topological-insulator phase in NdBi. By using micro-focused angle-resolved photoemission spectroscopy, we discovered contrasting surface electronic states for two types of AF domains; the surface having the out-of-plane component in the AF-ordering vector displays Dirac-cone states with a gigantic energy gap, whereas the surface parallel to the AF-ordering vector hosts gapless Dirac states despite the time-reversal-symmetry breaking. The present results establish an essential role of combined symmetry to protect massless Dirac fermions under the presence of AF order and widen opportunities to realize exotic phenomena utilizing AF topological materials.

14.
Phys Chem Chem Phys ; 14(18): 6289-97, 2012 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-22322861

RESUMEN

Laser induced acoustic desorption (LIAD) has been used for the first time to study the parent ion production and fragmentation mechanisms of a biological molecule in an intense femtosecond (fs) laser field. The photoacoustic shock wave generated in the analyte substrate (thin Ta foil) has been simulated using the hydrodynamic HYADES code, and the full LIAD process has been experimentally characterised as a function of the desorption UV-laser pulse parameters. Observed neutral plumes of densities >10(9) cm(-3) which are free from solvent or matrix contamination demonstrate the suitability and potential of the source for studying ultrafast dynamics in the gas phase using fs laser pulses. Results obtained with phenylalanine show that through manipulation of fundamental femtosecond laser parameters (such as pulse length, intensity and wavelength), energy deposition within the molecule can be controlled to allow enhancement of parent ion production or generation of characteristic fragmentation patterns. In particular by reducing the pulse length to a timescale equivalent to the fastest vibrational periods in the molecule, we demonstrate how fragmentation of the molecule can be minimised whilst maintaining a high ionisation efficiency.


Asunto(s)
Acústica , Gases/química , Rayos Láser , Fenilalanina/química , Temperatura , Cinética , Tantalio/química
15.
Rev Sci Instrum ; 93(9): 093905, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-36182447

RESUMEN

The APPLE-Knot undulator has been proposed to reduce the large on-axis heat load of the APPLE-II at very low photon energy. However, the current designs have an inherent non-zero second field integral due to the Knot sections, resulting in a transverse deflection of the electron beam throughout the undulator. For a long device, such a deviation can degrade the brightness and power distribution of the outgoing beam. Here, a new end-Knot section is presented to compensate for the electron trajectory, and the undulator is symmetrized to balance the output power distribution. The performance of the APPLE-Knot with symmetric power distribution is investigated. The partial power, flux, and polarization are compared with the APPLE-II. In the linear mode, APPLE-Knot shows a pronounced reduction of the partial power, with a similar flux to the APPLE-II. The symmetric power density distribution reduces the hotspot by 41%, with a flux loss of less than 5%. In the circular mode and at low photon energies, the flux is limited by the phase error of the symmetric design.

16.
Phys Rev Lett ; 107(17): 177402, 2011 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-22107580

RESUMEN

We use time- and angle-resolved photoemission spectroscopy with sub-30-fs extreme-ultraviolet pulses to map the time- and momentum-dependent electronic structure of photoexcited 1T-TaS(2). This compound is a two-dimensional Mott insulator with charge-density wave ordering. Charge order, evidenced by splitting between occupied subbands at the Brillouin zone boundary, melts well before the lattice responds. This challenges the view of a charge-density wave caused by electron-phonon coupling and Fermi-surface nesting alone, and suggests that electronic correlations play a key role in driving charge order.

17.
Nat Commun ; 12(1): 2874, 2021 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-34001892

RESUMEN

Topological superconductors (TSCs) are unconventional superconductors with bulk superconducting gap and in-gap Majorana states on the boundary that may be used as topological qubits for quantum computation. Despite their importance in both fundamental research and applications, natural TSCs are very rare. Here, combining state of the art synchrotron and laser-based angle-resolved photoemission spectroscopy, we investigated a stoichiometric transition metal dichalcogenide (TMD), 2M-WS2 with a superconducting transition temperature of 8.8 K (the highest among all TMDs in the natural form up to date) and observed distinctive topological surface states (TSSs). Furthermore, in the superconducting state, we found that the TSSs acquired a nodeless superconducting gap with similar magnitude as that of the bulk states. These discoveries not only evidence 2M-WS2 as an intrinsic TSC without the need of sensitive composition tuning or sophisticated heterostructures fabrication, but also provide an ideal platform for device applications thanks to its van der Waals layered structure.

18.
Anal Bioanal Chem ; 393(6-7): 1745-53, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19184593

RESUMEN

An analytical methodology based on an on-line sample enrichment of water samples by means of an imprinted polymer, and the separation of benzimidazole compounds within a C(18) column by ion-pair reversed-phase liquid chromatography, has been developed. The molecularly imprinted polymer has been synthesized by precipitation polymerization using thiabendazole as template molecule, methacrylic acid as functional monomer, and divinylbenzene as cross-linker. Initial experiments carried out by solid-phase extraction on cartridges demonstrated a clear imprint effect for thiabendazole, as well as the ability of the imprinted polymer to selectively rebind several benzimidazole compounds. The developed methodology has been applied to the quantification of thiabendazole, carbendazim, and benomyl in river, tap, and well water samples within a single analytical run at concentration levels below the legislated maximum concentration levels. In this sense, detection limits of 2.3-5.7 ng.L(-1) have been obtained for the analysis of benzimidazole fungicides in different water matrices. Recoveries obtained for the determination of benzimidazole fungicides in spiked samples ranged from 87% to 95%, with RSD below 5% in all cases.


Asunto(s)
Antifúngicos/análisis , Bencimidazoles/análisis , Agua/química , Cromatografía Líquida de Alta Presión/instrumentación , Cromatografía Líquida de Alta Presión/métodos , Impresión Molecular , Estructura Molecular , Polímeros/síntesis química , Polímeros/química , Sensibilidad y Especificidad , Factores de Tiempo
19.
Phys Rev E ; 100(4-1): 043207, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31770899

RESUMEN

The free-free opacity in dense systems is a property that both tests our fundamental understanding of correlated many-body systems, and is needed to understand the radiative properties of high energy-density plasmas. Despite its importance, predictive calculations of the free-free opacity remain challenging even in the condensed matter phase for simple metals. Here we show how the free-free opacity can be modelled at finite-temperatures via time-dependent density functional theory, and illustrate the importance of including local field corrections, core polarization, and self-energy corrections. Our calculations for ground-state Al are shown to agree well with experimental opacity measurements performed on the Artemis laser facility across a wide range of extreme ultraviolet wavelengths. We extend our calculations across the melt to the warm-dense matter regime, finding good agreement with advanced plasma models based on inverse bremsstrahlung at temperatures above 10 eV.

20.
Science ; 365(6459): 1282-1285, 2019 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-31604236

RESUMEN

Weyl semimetals are crystalline solids that host emergent relativistic Weyl fermions and have characteristic surface Fermi-arcs in their electronic structure. Weyl semimetals with broken time reversal symmetry are difficult to identify unambiguously. In this work, using angle-resolved photoemission spectroscopy, we visualized the electronic structure of the ferromagnetic crystal Co3Sn2S2 and discovered its characteristic surface Fermi-arcs and linear bulk band dispersions across the Weyl points. These results establish Co3Sn2S2 as a magnetic Weyl semimetal that may serve as a platform for realizing phenomena such as chiral magnetic effects, unusually large anomalous Hall effect and quantum anomalous Hall effect.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA