RESUMEN
Eleven laboratories collaborated to determine the periodic prevalence of Salmonella in a population of dogs and cats in the United States visiting veterinary clinics. Fecal samples (2,965) solicited from 11 geographically dispersed veterinary testing laboratories were collected in 36 states between January 2012 and April 2014 and tested using a harmonized method. The overall study prevalence of Salmonella in cats (3 of 542) was <1%. The prevalence in dogs (60 of 2,422) was 2.5%. Diarrhea was present in only 55% of positive dogs; however, 3.8% of the all diarrheic dogs were positive, compared with 1.8% of the nondiarrheic dogs. Salmonella-positive dogs were significantly more likely to have consumed raw food (P = 0.01), to have consumed probiotics (P = 0.002), or to have been given antibiotics (P = 0.01). Rural dogs were also more likely to be Salmonella positive than urban (P = 0.002) or suburban (P = 0.001) dogs. In the 67 isolates, 27 unique serovars were identified, with three dogs having two serovars present. Antimicrobial susceptibility testing of 66 isolates revealed that only four of the isolates were resistant to one or more antibiotics. Additional characterization of the 66 isolates was done using pulsed-field gel electrophoresis and whole-genome sequencing (WGS). Sequence data compared well to resistance phenotypic data and were submitted to the National Center for Biotechnology Information (NCBI). This study suggests an overall decline in prevalence of Salmonella-positive dogs and cats over the last decades and identifies consumption of raw food as a major risk factor for Salmonella infection. Of note is that almost half of the Salmonella-positive animals were clinically nondiarrheic.
Asunto(s)
Enfermedades Transmitidas por los Alimentos/epidemiología , Enfermedades Transmitidas por los Alimentos/veterinaria , Salmonelosis Animal/epidemiología , Salmonella/aislamiento & purificación , Alimentación Animal/microbiología , Animales , Antibacterianos/uso terapéutico , Gatos , Estudios Transversales , Perros , Heces/microbiología , Femenino , Enfermedades Transmitidas por los Alimentos/microbiología , Masculino , Pruebas de Sensibilidad Microbiana , Salmonella/efectos de los fármacos , Salmonelosis Animal/tratamiento farmacológico , Salmonelosis Animal/microbiología , Estados UnidosRESUMEN
A comprehensive understanding of common diseases of backyard poultry flocks is important to providing poultry health information to flock owners, veterinarians, and animal health officials. We collected autopsy reports over a 3-y period (2015-2017) from diagnostic laboratories in 8 states in the United States; 2,509 reports were collected, involving autopsies of 2,687 birds. The primary cause of mortality was categorized as infectious, noninfectious, neoplasia or lymphoproliferative disease, or undetermined. Neoplasia or lymphoproliferative disease was the most common primary diagnosis and involved 42% of the total birds autopsied; 63% of these cases were diagnosed as Marek's disease or leukosis/sarcoma. Bacterial, parasitic, and viral organisms were commonly detected, involving 42%, 28%, and 7% of the birds autopsied, respectively, with 2 or more organisms detected in 69% of birds. Our findings demonstrate the importance of educating flock owners about disease prevention and biosecurity practices. The detection of zoonotic bacteria including paratyphoid salmonellae, Campylobacter spp., Listeria monocytogenes, and Mycobacterium avium, and the detection of lead and other heavy metals, indicate public health risks to flock owners and consumers of backyard flock egg and meat products.
Asunto(s)
Crianza de Animales Domésticos , Pollos , Enfermedades de las Aves de Corral/mortalidad , Crianza de Animales Domésticos/métodos , Animales , Causas de Muerte , Patos , Femenino , Gansos , Masculino , Enfermedades de las Aves de Corral/clasificación , Pavos , Estados Unidos/epidemiologíaRESUMEN
Influenza A virus subtype H1N1 A(H1N1)pdm09 was first confirmed in pigs in the United States in October 2009. In November 2010, lungs and intestines from 2 York piglets from a small, privately owned herd were submitted to the Colorado State University Veterinary Diagnostic Laboratory. The submitting veterinarian reported rapid weight loss and signs of pneumonia in the piglets. Gross lesions included caudoventral pneumonia in both piglets, and histologic lesions in the lungs showed characteristics consistent with influenza virus and bacterial infection. Ribonucleic acid extracted from fresh lung homogenates from both piglets was positive for influenza A(H1N1)pdm09 by a real-time reverse transcription polymerase chain reaction. Virus was isolated from lung homogenates from both piglets in Madin-Darby canine kidney cells, as well as in 10-day-old specific pathogen-free embryonated chicken eggs. Sequence analysis showed 98% homology with 2009 H1N1 human isolates from across the United States and 98% homology against two 2009 and 2010 swine isolates from Nebraska and Minnesota. The current report documents the possible transmission of pandemic influenza A(H1N1)2009 virus [A(H1N1)pdm09] from a human being to a small, privately owned backyard swine herd. The owner was employed as a pharmacist, making occupational exposure to the pandemic influenza A(H1N1)pdm09 a possibility.