Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Biol Chem ; 286(1): 757-65, 2011 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-21047777

RESUMEN

Surfactant protein A (SP-A), a C-type lectin, plays an important role in innate lung host defense against inhaled pathogens. Crystallographic SP-A·ligand complexes have not been reported to date, limiting available molecular information about SP-A interactions with microbial surface components. This study describes crystal structures of calcium-dependent complexes of the C-terminal neck and carbohydrate recognition domain of SP-A with d-mannose, D-α-methylmannose, and glycerol, which represent subdomains of glycans on pathogen surfaces. Comparison of these complexes with the unliganded SP-A neck and carbohydrate recognition domain revealed an unexpected ligand-associated conformational change in the loop region surrounding the lectin site, one not previously reported for the lectin homologs SP-D and mannan-binding lectin. The net result of the conformational change is that the SP-A lectin site and the surrounding loop region become more compact. The Glu-202 side chain of unliganded SP-A extends out into the solvent and away from the calcium ion; however, in the complexes, the Glu-202 side chain translocates 12.8 Å to bind the calcium. The availability of Glu-202, together with positional changes involving water molecules, creates a more favorable hydrogen bonding environment for carbohydrate ligands. The Lys-203 side chain reorients as well, extending outward into the solvent in the complexes, thereby opening up a small cation-friendly cavity occupied by a sodium ion. Binding of this cation brings the large loop, which forms one wall of the lectin site, and the adjacent small loop closer together. The ability to undergo conformational changes may help SP-A adapt to different ligand classes, including microbial glycolipids and surfactant lipids.


Asunto(s)
Metabolismo de los Hidratos de Carbono , Carbohidratos/farmacología , Proteína A Asociada a Surfactante Pulmonar/química , Proteína A Asociada a Surfactante Pulmonar/metabolismo , Animales , Cristalografía por Rayos X , Glicerol/metabolismo , Glicerol/farmacología , Lectinas/química , Lectinas/metabolismo , Ligandos , Manosa/metabolismo , Manosa/farmacología , Metilmanósidos/metabolismo , Metilmanósidos/farmacología , Modelos Moleculares , Unión Proteica , Estructura Terciaria de Proteína/efectos de los fármacos , Ratas
2.
J Biol Chem ; 286(47): 40681-92, 2011 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-21965658

RESUMEN

The recognition of influenza A virus (IAV) by surfactant protein D (SP-D) is mediated by interactions between the SP-D carbohydrate recognition domains (CRD) and glycans displayed on envelope glycoproteins. Although native human SP-D shows potent antiviral and aggregating activity, trimeric recombinant neck+CRDs (NCRDs) show little or no capacity to influence IAV infection. A mutant trimeric NCRD, D325A/R343V, showed marked hemagglutination inhibition and viral neutralization, with viral aggregation and aggregation-dependent viral uptake by neutrophils. D325A/R343V exhibited glucose-sensitive binding to Phil82 hemagglutinin trimer (HA) by surface plasmon resonance. By contrast, there was very low binding to the HA trimer from another virus (PR8) that lacks glycans on the HA head. Mass spectrometry demonstrated the presence of high mannose glycans on the Phil82 HA at positions known to contribute to IAV binding. Molecular modeling predicted an enhanced capacity for bridging interactions between HA glycans and D325A/R343V. Finally, the trimeric D325A/R343V NCRD decreased morbidity and increased viral clearance in a murine model of IAV infection using a reassortant A/WSN/33 virus with a more heavily glycosylated HA. The combined data support a model in which altered binding by a truncated mutant SP-D to IAV HA glycans facilitates viral aggregation, leading to significant viral neutralization in vitro and in vivo. These studies demonstrate the potential utility of homology modeling and protein structure analysis for engineering effective collectin antivirals as in vivo therapeutics.


Asunto(s)
Resistencia a la Enfermedad/genética , Evolución Molecular , Subtipo H1N1 del Virus de la Influenza A/fisiología , Proteína D Asociada a Surfactante Pulmonar/química , Proteína D Asociada a Surfactante Pulmonar/genética , Resonancia por Plasmón de Superficie/métodos , Animales , Antivirales/metabolismo , Antivirales/farmacología , Cristalografía por Rayos X , Femenino , Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Humanos , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Subtipo H1N1 del Virus de la Influenza A/metabolismo , Espectrometría de Masas , Ratones , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Infecciones por Orthomyxoviridae/virología , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Proteína D Asociada a Surfactante Pulmonar/metabolismo , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA