Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
2.
Nat Rev Neurosci ; 20(1): 5-18, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30518959

RESUMEN

Mortality due to opioid use has grown to the point where, for the first time in history, opioid-related deaths exceed those caused by car accidents in many states in the United States. Changes in the prescribing of opioids for pain and the illicit use of fentanyl (and derivatives) have contributed to the current epidemic. Less known is the impact of opioids on hippocampal neurogenesis, the functional manipulation of which may improve the deleterious effects of opioid use. We provide new insights into how the dysregulation of neurogenesis by opioids can modify learning and affect, mood and emotions, processes that have been well accepted to motivate addictive behaviours.


Asunto(s)
Afecto/efectos de los fármacos , Analgésicos Opioides/farmacología , Encéfalo/efectos de los fármacos , Aprendizaje/efectos de los fármacos , Memoria/efectos de los fármacos , Neurogénesis/efectos de los fármacos , Encéfalo/metabolismo , Humanos , Receptores Opioides/metabolismo
3.
J Neural Transm (Vienna) ; 131(5): 563-580, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38570361

RESUMEN

Over 50 million Americans endure chronic pain where many do not receive adequate treatment and self-medicate to manage their pain by taking substances like opioids and cannabis. Research has shown high comorbidity between chronic pain and substance use disorders (SUD) and these disorders share many common neurobiological underpinnings, including hypodopaminergic transmission. Drugs commonly used for self-medication such as opioids and cannabis relieve emotional, bothersome components of pain as well as negative emotional affect that perpetuates misuse and increases the risk of progressing towards drug abuse. However, the causal effect between chronic pain and the development of SUDs has not been clearly established. In this review, we discuss evidence that affirms the proposition that chronic pain is a risk factor for the development of opioid and cannabis use disorders by outlining the clinical evidence and detailing neurobiological mechanisms that link pain and drug misuse. Central to the link between chronic pain and opioid and cannabis misuse is hypodopaminergic transmission and the modulation of dopamine signaling in the mesolimbic pathway by opioids and cannabis. Moreover, we discuss the role of kappa opioid receptor activation and neuroinflammation in the context of dopamine transmission, their contribution to opioid and cannabis withdrawal, along with potential new treatments.


Asunto(s)
Analgésicos Opioides , Dolor Crónico , Trastornos Relacionados con Opioides , Humanos , Dolor Crónico/tratamiento farmacológico , Dolor Crónico/fisiopatología , Analgésicos Opioides/efectos adversos , Animales , Abuso de Marihuana/complicaciones , Abuso de Marihuana/fisiopatología
4.
Proc Natl Acad Sci U S A ; 117(23): 13105-13116, 2020 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-32457152

RESUMEN

With over 30% of current medications targeting this family of proteins, G-protein-coupled receptors (GPCRs) remain invaluable therapeutic targets. However, due to their unique physicochemical properties, their low abundance, and the lack of highly specific antibodies, GPCRs are still challenging to study in vivo. To overcome these limitations, we combined here transgenic mouse models and proteomic analyses in order to resolve the interactome of the δ-opioid receptor (DOPr) in its native in vivo environment. Given its analgesic properties and milder undesired effects than most clinically prescribed opioids, DOPr is a promising alternative therapeutic target for chronic pain management. However, the molecular and cellular mechanisms regulating its signaling and trafficking remain poorly characterized. We thus performed liquid chromatography-tandem mass spectrometry (LC-MS/MS) analyses on brain homogenates of our newly generated knockin mouse expressing a FLAG-tagged version of DOPr and revealed several endogenous DOPr interactors involved in protein folding, trafficking, and signal transduction. The interactions with a few identified partners such as VPS41, ARF6, Rabaptin-5, and Rab10 were validated. We report an approach to characterize in vivo interacting proteins of GPCRs, the largest family of membrane receptors with crucial implications in virtually all physiological systems.


Asunto(s)
Encéfalo/metabolismo , Mapas de Interacción de Proteínas/fisiología , Receptores Opioides delta/metabolismo , Animales , Cromatografía Líquida de Alta Presión , Femenino , Técnicas de Sustitución del Gen , Genes Reporteros/genética , Masculino , Ratones , Ratones Transgénicos , Pliegue de Proteína , Mapeo de Interacción de Proteínas/métodos , Proteómica , Receptores Opioides delta/genética , Transducción de Señal/fisiología , Espectrometría de Masas en Tándem
5.
J Neurosci Res ; 100(1): 297-308, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-31721270

RESUMEN

The rewarding effect of opiates is mediated through dissociable neural systems in drug naïve and drug-dependent states. Neuroadaptations associated with chronic drug use are similar to those produced by chronic pain, suggesting that opiate reward could also involve distinct mechanisms in chronic pain and pain-naïve states. We tested this hypothesis by examining the effect of dopamine (DA) antagonism on morphine reward in a rat model of neuropathic pain.Neuropathic pain was induced in male Sprague-Dawley rats through chronic constriction (CCI) of the sciatic nerve; reward was assessed in the conditioned place preference (CPP) paradigm in separate groups at early (4-8 days post-surgery) and late (11-15 days post-surgery) phases of neuropathic pain. Minimal effective doses of morphine that produced a CPP in early and late phases of neuropathic pain were 6 mg/kg and 2 mg/kg respectively. The DA D1 receptor antagonist, SCH23390, blocked a morphine CPP in sham, but not CCI, rats at a higher dose (0.5 mg/kg), but had no effect at a lower dose (0.1 mg/kg). The DA D2 receptor antagonist, eticlopride (0.1 and 0.5 mg/kg), had no effect on a morphine CPP in sham or CCI rats, either in early or late phases of neuropathic pain. In the CPP paradigm, morphine reward involves DA D1 mechanisms in pain-naïve but not chronic pain states. This could reflect increased sensitivity to drug effects in pain versus no pain conditions and/or differential mediation of opiate reward in these two states.


Asunto(s)
Dolor Crónico , Morfina , Animales , Dolor Crónico/tratamiento farmacológico , Masculino , Morfina/farmacología , Ratas , Ratas Sprague-Dawley , Receptores de Dopamina D1 , Recompensa
6.
J Neurosci Res ; 100(1): 129-148, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-32623788

RESUMEN

Delta opioid receptor (DOR) agonists alleviate nociceptive behaviors in various chronic pain models, including neuropathic pain, while having minimal effect on sensory thresholds in the absence of injury. The mechanisms underlying nerve injury-induced enhancement of DOR function are unclear. We used a peripheral nerve injury (PNI) model of neuropathic pain to assess changes in the function and localization of DORs in mice and rats. Intrathecal administration of DOR agonists reversed mechanical allodynia and thermal hyperalgesia. The dose-dependent thermal antinociceptive effects of DOR agonists were shifted to the left in PNI rats. Administration of DOR agonists produced a conditioned place preference in PNI, but not in sham, animals, whereas the DOR antagonist naltrindole produced a place aversion in PNI, but not in sham, mice, suggesting the engagement of endogenous DOR activity in suppressing pain associated with the injury. GTPγS autoradiography revealed an increase in DOR function in the dorsal spinal cord, ipsilateral to PNI. Immunogold electron microscopy and in vivo fluorescent agonist assays were used to assess changes in the ultrastructural localization of DORs in the spinal dorsal horn. In shams, DORs were primarily localized within intracellular compartments. PNI significantly increased the cell surface expression of DORs within lamina IV-V dendritic profiles. Using neonatal capsaicin treatment, we identified that DOR agonist-induced thermal antinociception was mediated via receptors expressed on primary afferent sensory neurons but did not alter mechanical thresholds. These data reveal that the regulation of DORs following PNI and suggest the importance of endogenous activation of DORs in regulating chronic pain states.


Asunto(s)
Neuralgia , Receptores Opioides delta , Analgésicos Opioides/efectos adversos , Animales , Modelos Animales de Enfermedad , Hiperalgesia/inducido químicamente , Ratones , Neuralgia/metabolismo , Ratas
7.
J Neurosci Res ; 100(1): 19-34, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-32830380

RESUMEN

The actions of endogenous opioids and nociceptin/orphanin FQ are mediated by four homologous G protein-coupled receptors that constitute the opioid receptor family. However, little is known about opioid systems in cyclostomes (living jawless fish) and how opioid systems might have evolved from invertebrates. Here, we leveraged de novo transcriptome and low-coverage whole-genome assembly in the Pacific hagfish (Eptatretus stoutii) to identify and characterize the first full-length coding sequence for a functional opioid receptor in a cyclostome. Additionally, we define two novel endogenous opioid precursors in this species that predict several novel opioid peptides. Bioinformatic analysis shows no closely related opioid receptor genes in invertebrates with regard either to the genomic organization or to conserved opioid receptor-specific sequences that are common in all vertebrates. Furthermore, no proteins analogous to vertebrate opioid precursors could be identified by genomic searches despite previous claims of protein or RNA-derived sequences in several invertebrate species. The presence of an expressed orthologous receptor and opioid precursors in the Pacific hagfish confirms that a functional opioid system was likely present in the common ancestor of all extant vertebrates some 550 million years ago, earlier than all previous authenticated accounts. We discuss the premise that the cyclostome and vertebrate opioid systems evolved from invertebrate systems concerned with antimicrobial defense and speculate that the high concentrations of opioid precursors in tissues such as the testes, gut, and activated immune cells are key remnants of this evolutionary role.


Asunto(s)
Anguila Babosa , Analgésicos Opioides , Animales , Evolución Biológica , Evolución Molecular , Anguila Babosa/genética , Péptidos Opioides , Filogenia
8.
Alcohol Alcohol ; 57(6): 727-733, 2022 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-35788255

RESUMEN

AIMS: The current study examined the association between pain catastrophizing and alcohol cue-elicited brain activation in individuals with alcohol use disorder (AUD). METHODS: Non-treatment seeking heavy drinkers with AUD (n = 45; 28 males) completed self-report measures of pain catastrophizing and alcohol use/problems as part of a clinical trial of the neuroimmune modulator ibudilast. Participants were randomized to either placebo (n = 25) or ibudilast (n = 20) and completed an functional magnetic resonance imaging (fMRI) scan to assess neural activation to alcohol cues 1 week into the medication trial. Multiple linear regression examined whether pain catastrophizing predicted cue-induced activation in a priori regions of interest, namely the dorsal and ventral striatum (VS). An exploratory whole-brain analysis was conducted to assess the relationship between pain catastrophizing and neural alcohol cue reactivity. RESULTS: Pain catastrophizing predicted greater cue-induced activation in the dorsal (b = 0.006; P = 0.03) but not VS controlling for medication. Pain catastrophizing was positively associated with neural activation to alcohol cues in regions including the bilateral thalamus, left precuneus and left frontal pole. CONCLUSION: Greater pain catastrophizing is associated with greater cue-induced neural activation in brain regions sub-serving habits and compulsive alcohol use. These findings provide initial support for a neural mechanism by which pain catastrophizing may drive alcohol craving among individuals with AUD.


Asunto(s)
Alcoholismo , Masculino , Humanos , Alcoholismo/tratamiento farmacológico , Señales (Psicología) , Catastrofización , Consumo de Bebidas Alcohólicas , Ansia/fisiología , Imagen por Resonancia Magnética/métodos , Encéfalo/fisiología , Etanol
9.
Handb Exp Pharmacol ; 271: 315-350, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33547588

RESUMEN

Pain is complex and is a unique experience for individuals in that no two people will have exactly the same physiological and emotional response to the same noxious stimulus or injury. Pain is composed of two essential processes: a sensory component that allows for discrimination of the intensity and location of a painful stimulus and an emotional component that underlies the affective, motivational, unpleasant, and aversive response to a painful stimulus. Kappa opioid receptor (KOR) activation in the periphery and throughout the neuroaxis modulates both of these components of the pain experience. In this chapter we focus on recent findings that KORs contribute to the emotional, aversive nature of chronic pain, including how expression in the limbic circuitry contributes to anhedonic states and components of opioid misuse disorder. While the primary focus is on preclinical pain models, we also highlight clinical or human research where there is strong evidence for KOR involvement in negative affective states associated with chronic pain and opioid misuse.


Asunto(s)
Dolor Crónico , Trastornos Relacionados con Opioides , Analgésicos Opioides , Dolor Crónico/tratamiento farmacológico , Humanos , Receptores Opioides kappa , Transducción de Señal
10.
Int J Mol Sci ; 23(18)2022 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-36142465

RESUMEN

Presenilin-1 (PSEN1) is a crucial subunit within the γ-secretase complex and regulates ß-amyloid (Aß) production. Accumulated evidence indicates that n-butylidenephthalide (BP) acts effectively to reduce Aß levels in neuronal cells that are derived from trisomy 21 (Ts21) induced pluripotent stem cells (iPSCs). However, the mechanism underlying this effect remains unclear. This article aims to investigate the possible mechanisms through which BP ameliorates the development of Alzheimer's disease (AD) and verify the effectiveness of BP through animal experiments. Results from RNA microarray analysis showed that BP treatment in Ts21 iPSC-derived neuronal cells reduced long noncoding RNA (lncRNA) CYP3A43-2 levels and increased microRNA (miR)-29b-2-5p levels. Bioinformatics tool prediction analysis, biotin-labeled miR-29b-2-5p pull-down assay, and dual-luciferase reporter assay confirmed a direct negative regulatory effect for miRNA29b-2-5p on lnc-RNA-CYP3A43-2 and PSEN1. Moreover, BP administration improved short-term memory and significantly reduced Aß accumulation in the hippocampus and cortex of 3xTg-AD mice but failed in miR-29b-2-5p mutant mice generated by CRISP/Cas9 technology. In addition, analysis of brain samples from patients with AD showed a decrease in microRNA-29b-2-5p expression in the frontal cortex region. Our results provide evidence that the LncCYP3A43-2/miR29-2-5p/PSEN1 network might be involved in the molecular mechanisms underlying BP-induced Aß reduction.


Asunto(s)
Enfermedad de Alzheimer , MicroARNs , ARN Largo no Codificante , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Secretasas de la Proteína Precursora del Amiloide/genética , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/metabolismo , Animales , Biotina , Cognición , Ratones , MicroARNs/metabolismo , Placa Amiloide , Presenilina-1/genética , ARN Largo no Codificante/genética
11.
Cell Mol Neurobiol ; 41(5): 899-926, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33245509

RESUMEN

It is estimated that nearly a third of people who abuse drugs started with prescription opioid medicines. Approximately, 11.5 million Americans used prescription drugs recreationally in 2016, and in 2018, 46,802 Americans died as the result of an opioid overdose, including prescription opioids, heroin, and illicitly manufactured fentanyl (National Institutes on Drug Abuse (2020) Opioid Overdose Crisis. https://www.drugabuse.gov/drugs-abuse/opioids/opioid-overdose-crisis . Accessed 06 June 2020). Yet physicians will continue to prescribe oral opioids for moderate-to-severe pain in the absence of alternative therapeutics, underscoring the importance in understanding how drug choice can influence detrimental outcomes. One of the opioid prescription medications that led to this crisis is oxycodone, where misuse of this drug has been rampant. Being one of the most highly prescribed opioid medications for treating moderate-to-severe pain as reflected in the skyrocketed increase in retail sales of 866% between 1997 and 2007, oxycodone was initially suggested to be less addictive than morphine. The false-claimed non-addictive formulation of oxycodone, OxyContin, further contributed to the opioid crisis. Abuse was often carried out by crushing the pills for immediate burst release, typically by nasal insufflation, or by liquefying the pills for intravenous injection. Here, we review oxycodone pharmacology and abuse liability as well as present the hypothesis that oxycodone may exhibit a unique pharmacology that contributes to its high likability and abuse susceptibility. We will discuss various mechanisms that likely contribute to the high abuse rate of oxycodone including clinical drug likability, pharmacokinetics, pharmacodynamics, differences in its actions within mesolimbic reward circuity compared to other opioids, and the possibility of differential molecular and cellular receptor interactions that contribute to its selective effects. We will also discuss marketing strategies and drug difference that likely contributes to the oxycodone opioid use disorders and addiction.


Asunto(s)
Analgésicos Opioides/efectos adversos , Conducta Adictiva/epidemiología , Epidemia de Opioides , Trastornos Relacionados con Opioides/epidemiología , Oxicodona/efectos adversos , Recompensa , Analgésicos Opioides/administración & dosificación , Animales , Conducta Adictiva/psicología , Humanos , Trastornos Relacionados con Opioides/psicología , Oxicodona/administración & dosificación , Dolor/tratamiento farmacológico , Dolor/epidemiología , Dolor/psicología
12.
Learn Mem ; 27(9): 395-413, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32817306

RESUMEN

A set of common-acting iron-responsive 5'untranslated region (5'UTR) motifs can fold into RNA stem loops that appear significant to the biology of cognitive declines of Parkinson's disease dementia (PDD), Lewy body dementia (LDD), and Alzheimer's disease (AD). Neurodegenerative diseases exhibit perturbations of iron homeostasis in defined brain subregions over characteristic time intervals of progression. While misfolding of Aß from the amyloid-precursor-protein (APP), alpha-synuclein, prion protein (PrP) each cause neuropathic protein inclusions in the brain subregions, iron-responsive-like element (IRE-like) RNA stem-loops reside in their transcripts. APP and αsyn have a role in iron transport while gene duplications elevate the expression of their products to cause rare familial cases of AD and PDD. Of note, IRE-like sequences are responsive to excesses of brain iron in a potential feedback loop to accelerate neuronal ferroptosis and cognitive declines as well as amyloidosis. This pathogenic feedback is consistent with the translational control of the iron storage protein ferritin. We discuss how the IRE-like RNA motifs in the 5'UTRs of APP, alpha-synuclein and PrP mRNAs represent uniquely folded drug targets for therapies to prevent perturbed iron homeostasis that accelerates AD, PD, PD dementia (PDD) and Lewy body dementia, thus preventing cognitive deficits. Inhibition of alpha-synuclein translation is an option to block manganese toxicity associated with early childhood cognitive problems and manganism while Pb toxicity is epigenetically associated with attention deficit and later-stage AD. Pathologies of heavy metal toxicity centered on an embargo of iron export may be treated with activators of APP and ferritin and inhibitors of alpha-synuclein translation.


Asunto(s)
Regiones no Traducidas 5'/efectos de los fármacos , Péptidos beta-Amiloides/metabolismo , Ferritinas/metabolismo , Ferroptosis/fisiología , Intoxicación por Metales Pesados/metabolismo , Proteínas Reguladoras del Hierro/metabolismo , Trastornos Neurocognitivos/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Fármacos Neuroprotectores/farmacología , Biosíntesis de Proteínas/efectos de los fármacos , alfa-Sinucleína/metabolismo , Péptidos beta-Amiloides/efectos de los fármacos , Animales , Ferritinas/efectos de los fármacos , Ferroptosis/efectos de los fármacos , Intoxicación por Metales Pesados/tratamiento farmacológico , Intoxicación por Metales Pesados/fisiopatología , Humanos , Proteínas Reguladoras del Hierro/efectos de los fármacos , Trastornos Neurocognitivos/tratamiento farmacológico , Enfermedades Neurodegenerativas/tratamiento farmacológico , alfa-Sinucleína/efectos de los fármacos
13.
J Neurosci ; 39(21): 4162-4178, 2019 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-30862664

RESUMEN

Pain is a multidimensional experience and negative affect, or how much the pain is "bothersome", significantly impacts the sufferers' quality of life. It is well established that the κ opioid system contributes to depressive and dysphoric states, but whether this system contributes to the negative affect precipitated by the occurrence of chronic pain remains tenuous. Using a model of persistent pain, we show by quantitative real-time-PCR, florescence in situ hybridization, Western blotting and GTPgS autoradiography an upregulation of expression and the function of κ opioid receptors (KORs) and its endogenous ligand dynorphin in the mesolimbic circuitry in animals with chronic pain compared with surgical controls. Using in vivo microdialysis and microinjection of drugs into the mesolimbic dopamine system, we demonstrate that inhibiting KORs reinstates evoked dopamine release and reward-related behaviors in chronic pain animals. Chronic pain enhanced KOR agonist-induced place aversion in a sex-dependent manner. Using various place preference paradigms, we show that activation of KORs drives pain aversive states in male but not female mice. However, KOR antagonist treatment was effective in alleviating anxiogenic and depressive affective-like behaviors in both sexes. Finally, ablation of KORs from dopamine neurons using AAV-TH-cre in KORloxP mice prevented pain-induced aversive states as measured by place aversion assays. Our results strongly support the use of KOR antagonists as therapeutic adjuvants to alleviate the emotional, tonic-aversive component of chronic pain, which is argued to be the most significant component of the pain experience that impacts patients' quality of life.SIGNIFICANCE STATEMENT We show that KORs are sufficient to drive the tonic-aversive component of chronic pain; the emotional component of pain that is argued to significantly impact a patient's quality of life. The impact of our study is broadly relevant to affective disorders associated with disruption of reward circuitry and thus likely contributes to many of the devastating sequelae of chronic pain, including the poor response to treatment of many patients, debilitating affective disorders (other disorders including anxiety and depression that demonstrate high comorbidity with chronic pain) and substance abuse. Indeed, coexisting psychopathology increases pain intensity, pain-related disability and effectiveness of treatments (Jamison and Edwards, 2013).


Asunto(s)
Dolor Crónico/metabolismo , Dolor Crónico/psicología , Emociones/fisiología , Percepción del Dolor/fisiología , Receptores Opioides kappa/metabolismo , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratas , Ratas Long-Evans
14.
Environ Health ; 19(1): 104, 2020 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-33008482

RESUMEN

BACKGROUND: Although prior studies showed a correlation between environmental manganese (Mn) exposure and neurodevelopmental disorders in children, the results have been inconclusive. There has yet been no consistent biomarker of environmental Mn exposure. Here, we summarized studies that investigated associations between manganese in biomarkers and childhood neurodevelopment and suggest a reliable biomarker. METHODS: We searched PubMed and Web of Science for potentially relevant articles published until December 31th 2019 in English. We also conducted a meta-analysis to quantify the effects of manganese exposure on Intelligence Quotient (IQ) and the correlations of manganese in different indicators. RESULTS: Of 1754 citations identified, 55 studies with 13,388 subjects were included. Evidence from cohort studies found that higher manganese exposure had a negative effect on neurodevelopment, mostly influencing cognitive and motor skills in children under 6 years of age, as indicated by various metrics. Results from cross-sectional studies revealed that elevated Mn in hair (H-Mn) and drinking water (W-Mn), but not blood (B-Mn) or teeth (T-Mn), were associated with poorer cognitive and behavioral performance in children aged 6-18 years old. Of these cross-sectional studies, most papers reported that the mean of H-Mn was more than 0.55 µg/g. The meta-analysis concerning H-Mn suggested that a 10-fold increase in hair manganese was associated with a decrease of 2.51 points (95% confidence interval (CI), - 4.58, - 0.45) in Full Scale IQ, while the meta-analysis of B-Mn and W-Mn generated no such significant effects. The pooled correlation analysis revealed that H-Mn showed a more consistent correlation with W-Mn than B-Mn. Results regarding sex differences of manganese associations were inconsistent, although the preliminary meta-analysis found that higher W-Mn was associated with better Performance IQ only in boys, at a relatively low water manganese concentrations (most below 50 µg/L). CONCLUSIONS: Higher manganese exposure is adversely associated with childhood neurodevelopment. Hair is the most reliable indicator of manganese exposure for children at 6-18 years of age. Analysis of the publications demonstrated sex differences in neurodevelopment upon manganese exposure, although a clear pattern has not yet been elucidated for this facet of our study.


Asunto(s)
Desarrollo Infantil/efectos de los fármacos , Exposición a Riesgos Ambientales/efectos adversos , Contaminantes Ambientales/efectos adversos , Manganeso/efectos adversos , Trastornos del Neurodesarrollo/inducido químicamente , Biomarcadores/análisis , Niño , Cabello/química , Humanos , Inteligencia/efectos de los fármacos
15.
Pharmacol Rev ; 68(3): 631-700, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27343248

RESUMEN

Opioids are among the most effective analgesics available and are the first choice in the treatment of acute severe pain. However, partial efficacy, a tendency to produce tolerance, and a host of ill-tolerated side effects make clinically available opioids less effective in the management of chronic pain syndromes. Given that most therapeutic opioids produce their actions via µ-opioid receptors (MOPrs), other targets are constantly being explored, among which δ-opioid receptors (DOPrs) are being increasingly considered as promising alternatives. This review addresses DOPrs from the perspective of cellular and molecular determinants of their pharmacological diversity. Thus, DOPr ligands are examined in terms of structural and functional variety, DOPrs' capacity to engage a multiplicity of canonical and noncanonical G protein-dependent responses is surveyed, and evidence supporting ligand-specific signaling and regulation is analyzed. Pharmacological DOPr subtypes are examined in light of the ability of DOPr to organize into multimeric arrays and to adopt multiple active conformations as well as differences in ligand kinetics. Current knowledge on DOPr targeting to the membrane is examined as a means of understanding how these receptors are especially active in chronic pain management. Insight into cellular and molecular mechanisms of pharmacological diversity should guide the rational design of more effective, longer-lasting, and better-tolerated opioid analgesics for chronic pain management.


Asunto(s)
Analgésicos Opioides/farmacología , Receptores Opioides delta/agonistas , Receptores Opioides delta/antagonistas & inhibidores , Animales , Humanos , Ligandos , Modelos Moleculares , Estructura Molecular , Terapia Molecular Dirigida/métodos , Dimensión del Dolor , Receptores Opioides delta/metabolismo , Transducción de Señal/efectos de los fármacos
16.
Int J Mol Sci ; 20(4)2019 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-30823541

RESUMEN

The therapeutic value of inhibiting translation of the amyloid precursor protein (APP) offers the possibility to reduce neurotoxic amyloid formation, particularly in cases of familial Alzheimer's disease (AD) caused by APP gene duplications (Dup⁻APP) and in aging Down syndrome individuals. APP mRNA translation inhibitors such as the anticholinesterase phenserine, and high throughput screened molecules, selectively inhibited the uniquely folded iron-response element (IRE) sequences in the 5'untranslated region (5'UTR) of APP mRNA and this class of drug continues to be tested in a clinical trial as an anti-amyloid treatment for AD. By contrast, in younger age groups, APP expression is not associated with amyloidosis, instead it acts solely as a neuroprotectant while facilitating cellular ferroportin-dependent iron efflux. We have reported that the environmental metallotoxins Lead (Pb) and manganese (Mn) cause neuronal death by interfering with IRE dependent translation of APP and ferritin. The loss of these iron homeostatic neuroprotectants thereby caused an embargo of iron (Fe) export from neurons as associated with excess unstored intracellular iron and the formation of toxic reactive oxidative species (ROS). We propose that APP 5'UTR directed translation activators can be employed therapeutically to protect neurons exposed to high acute Pb and/or Mn exposure. Certainly, high potency APP translation activators, exemplified by the Food and Drug Administration (FDA) pre-approved M1 muscarinic agonist AF102B and high throughput-screened APP 5'UTR translation activators, are available for drug development to treat acute toxicity caused by Pb/Mn exposure to neurons. We conclude that APP translation activators can be predicted to prevent acute metal toxicity to neurons by a mechanism related to the 5'UTR specific yohimbine which binds and targets the canonical IRE RNA stem loop as an H-ferritin translation activator.


Asunto(s)
Precursor de Proteína beta-Amiloide/genética , Ferritinas/genética , Proteínas Reguladoras del Hierro/genética , Intoxicación del Sistema Nervioso por Plomo/tratamiento farmacológico , Intoxicación por Manganeso/tratamiento farmacológico , Agonistas Muscarínicos/uso terapéutico , Quinuclidinas/uso terapéutico , Elementos de Respuesta/fisiología , Tiofenos/uso terapéutico , Regiones no Traducidas 5'/efectos de los fármacos , Enfermedad Aguda , Enfermedad de Alzheimer/metabolismo , Animales , Síndrome de Down/metabolismo , Humanos , Hierro/metabolismo , Ratones , Agonistas Muscarínicos/farmacología , Neuronas/metabolismo , Biosíntesis de Proteínas/efectos de los fármacos , Quinuclidinas/farmacología , ARN Mensajero/genética , Ratas , Tiofenos/farmacología
17.
J Neurochem ; 147(6): 831-848, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30152072

RESUMEN

For more than 150 years, it is known that occupational overexposure of manganese (Mn) causes movement disorders resembling Parkinson's disease (PD) and PD-like syndromes. However, the mechanisms of Mn toxicity are still poorly understood. Here, we demonstrate that Mn dose- and time-dependently blocks the protein translation of amyloid precursor protein (APP) and heavy-chain Ferritin (H-Ferritin), both iron homeostatic proteins with neuroprotective features. APP and H-Ferritin are post-transcriptionally regulated by iron responsive proteins, which bind to homologous iron responsive elements (IREs) located in the 5'-untranslated regions (5'-UTRs) within their mRNA transcripts. Using reporter assays, we demonstrate that Mn exposure repressed the 5'-UTR-activity of APP and H-Ferritin, presumably via increased iron responsive proteins-iron responsive elements binding, ultimately blocking their protein translation. Using two specific Fe2+ -specific probes (RhoNox-1 and IP-1) and ion chromatography inductively coupled plasma mass spectrometry (IC-ICP-MS), we show that loss of the protective axis of APP and H-Ferritin resulted in unchecked accumulation of redox-active ferrous iron (Fe2+ ) fueling neurotoxic oxidative stress. Enforced APP expression partially attenuated Mn-induced generation of cellular and lipid reactive oxygen species and neurotoxicity. Lastly, we could validate the Mn-mediated suppression of APP and H-Ferritin in two rodent in vivo models (C57BL6/N mice and RjHan:SD rats) mimicking acute and chronic Mn exposure. Together, these results suggest that Mn-induced neurotoxicity is partly attributable to the translational inhibition of APP and H-Ferritin resulting in impaired iron metabolism and exacerbated neurotoxic oxidative stress. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.


Asunto(s)
Precursor de Proteína beta-Amiloide/antagonistas & inhibidores , Apoferritinas/antagonistas & inhibidores , Hierro/metabolismo , Intoxicación por Manganeso/metabolismo , Regiones no Traducidas 5' , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Apoferritinas/metabolismo , Línea Celular , Supervivencia Celular/efectos de los fármacos , Humanos , Ratones , Ratones Endogámicos C57BL , Estrés Oxidativo , Modificación Traduccional de las Proteínas/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo
18.
Behav Pharmacol ; 29(2 and 3-Spec Issue): 241-254, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29481424

RESUMEN

Long-term use of opioid analgesics is limited by tolerance development and undesirable adverse effects. Paradoxically, spinal administration of ultra-low-dose (ULD) G-protein-coupled receptor antagonists attenuates analgesic tolerance. Here, we determined whether systemic ULD α2-adrenergic receptor (AR) antagonists attenuate the development of morphine tolerance, whether these effects extend to the cannabinoid (CB1) receptor system, and if behavioral effects are reflected in changes in opioid-induced spinal gliosis. Male rats were treated daily with morphine (5 mg/kg) alone or in combination with ULD α2-AR (atipamezole or efaroxan; 17 ng/kg) or CB1 (rimonabant; 5 ng/kg) antagonists; control groups received ULD injections only. Thermal tail flick latencies were assessed across 7 days, before and 30 min after the injection. On day 8, spinal cords were isolated, and changes in spinal gliosis were assessed through fluorescent immunohistochemistry. Both ULD α2-AR antagonists attenuated morphine tolerance, whereas the ULD CB1 antagonist did not. In contrast, both ULD atipamezole and ULD rimonabant attenuated morphine-induced microglial reactivity and astrogliosis in deep and superficial spinal dorsal horn. So, although paradoxical effects of ULD antagonists are common to several G-protein-coupled receptor systems, these may not involve similar mechanisms. Spinal glia alone may not be the main mechanism through which tolerance is modulated.


Asunto(s)
Tolerancia a Medicamentos/fisiología , Morfina/metabolismo , Neuroglía/efectos de los fármacos , Antagonistas de Receptores Adrenérgicos alfa 2/farmacología , Analgésicos/farmacología , Analgésicos Opioides/farmacología , Animales , Benzofuranos/farmacología , Antagonistas de Receptores de Cannabinoides/farmacología , Cannabinoides , Relación Dosis-Respuesta a Droga , Gliosis/inducido químicamente , Imidazoles/farmacología , Inyecciones Espinales/métodos , Masculino , Morfina/farmacología , Norepinefrina , Dimensión del Dolor , Ratas , Ratas Sprague-Dawley , Receptor Cannabinoide CB1 , Rimonabant/farmacología , Columna Vertebral/efectos de los fármacos
19.
Handb Exp Pharmacol ; 247: 115-127, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29633181

RESUMEN

Opioid receptors are the sites of action for morphine and most other clinically used opioid drugs. Abundant evidence now demonstrates that different opioid receptor types can physically associate to form heteromers. Owing to their constituent monomers' involvement in analgesia, mu/delta opioid receptor (M/DOR) heteromers have been a particular focus of attention. Understandings of the physiological relevance and indisputable proof of M/DOR formation in vivo are still evolving. This aspect of the field has been slow to progress in large part by the limitations of most available experimental models; recently however, promising progress is being made. As a result, the long-repeated promise of opioid receptor heteromers as selective therapeutic targets is now being realized.


Asunto(s)
Receptores Opioides delta/efectos de los fármacos , Receptores Opioides delta/fisiología , Receptores Opioides mu/efectos de los fármacos , Receptores Opioides mu/fisiología , Analgésicos Opioides/farmacología , Animales , Diseño de Fármacos , Humanos , Ligandos , Multimerización de Proteína
20.
J Neurosci Res ; 95(6): 1330-1335, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-27574286

RESUMEN

Microglial activation in the spinal cord plays a central role in the development and maintenance of chronic pain after a peripheral nerve injury (PNI). There has not yet been a thorough assessment of microglial activation in brain regions associated with pain and reward. To this end, this study uses a mouse model of neuropathic pain in which the left sciatic nerve of male C57Bl/6J mice is loosely constricted (chronic constriction injury) to assess microglial activation in several brain regions 2 weeks after injury, a time point at which pain hypersensitivity is well established. We found significant microglial activation in brain regions associated with sensory pain transmission and affect, including the thalamus, sensory cortex, and amygdala. Activation was consistently most robust in brain regions contralateral to the side of injury. Brain regions not directly involved in either sensory or affective dimensions of pain, such as the motor cortex, did not display microglial activation. This study confirms that PNI induces microglial activation in regions involved with both sensory and affective components of pain. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Encéfalo/patología , Dolor Crónico/patología , Microglía/patología , Animales , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Dolor Crónico/etiología , Modelos Animales de Enfermedad , Lateralidad Funcional , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Traumatismos de los Nervios Periféricos/complicaciones , ARN Mensajero/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA