Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Bases de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Nature ; 579(7799): 385-392, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32188937

RESUMEN

The Indian Ocean Dipole (IOD) affects climate and rainfall across the world, and most severely in nations surrounding the Indian Ocean1-4. The frequency and intensity of positive IOD events increased during the twentieth century5 and may continue to intensify in a warming world6. However, confidence in predictions of future IOD change is limited by known biases in IOD models7 and the lack of information on natural IOD variability before anthropogenic climate change. Here we use precisely dated and highly resolved coral records from the eastern equatorial Indian Ocean, where the signature of IOD variability is strong and unambiguous, to produce a semi-continuous reconstruction of IOD variability that covers five centuries of the last millennium. Our reconstruction demonstrates that extreme positive IOD events were rare before 1960. However, the most extreme event on record (1997) is not unprecedented, because at least one event that was approximately 27 to 42 per cent larger occurred naturally during the seventeenth century. We further show that a persistent, tight coupling existed between the variability of the IOD and the El Niño/Southern Oscillation during the last millennium. Indo-Pacific coupling was characterized by weak interannual variability before approximately 1590, which probably altered teleconnection patterns, and by anomalously strong variability during the seventeenth century, which was associated with societal upheaval in tropical Asia. A tendency towards clustering of positive IOD events is evident in our reconstruction, which-together with the identification of extreme IOD variability and persistent tropical Indo-Pacific climate coupling-may have implications for improving seasonal and decadal predictions and managing the climate risks of future IOD variability.


Asunto(s)
Antozoos/metabolismo , Cambio Climático/estadística & datos numéricos , Animales , Conjuntos de Datos como Asunto , El Niño Oscilación del Sur , Fósiles , Historia del Siglo XV , Historia del Siglo XVI , Historia del Siglo XVII , Historia del Siglo XVIII , Historia del Siglo XIX , Historia del Siglo XX , Historia del Siglo XXI , Historia Medieval , Océano Índico , Indonesia , Islas , Modelos Teóricos , Isótopos de Oxígeno , Océano Pacífico , Lluvia , Estaciones del Año , Clima Tropical
3.
Glob Ecol Biogeogr ; 31(11): 2162-2171, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36606261

RESUMEN

Motivation: Historical changes in sea level caused shifting coastlines that affected the distribution and evolution of marine and terrestrial biota. At the onset of the Last Glacial Maximum (LGM) 26 ka, sea levels were >130 m lower than at present, resulting in seaward-shifted coastlines and shallow shelf seas, with emerging land bridges leading to the isolation of marine biota and the connection of land-bridge islands to the continents. At the end of the last ice age, sea levels started to rise at unprecedented rates, leading to coastal retreat, drowning of land bridges and contraction of island areas. Although a growing number of studies take historical coastline dynamics into consideration, they are mostly based on past global sea-level stands and present-day water depths and neglect the influence of global geophysical changes on historical coastline positions. Here, we present a novel geophysically corrected global historical coastline position raster for the period from 26 ka to the present. This coastline raster allows, for the first time, calculation of global and regional coastline retreat rates and land loss rates. Additionally, we produced, per time step, 53 shelf sea rasters to present shelf sea positions and to calculate the shelf sea expansion rates. These metrics are essential to assess the role of isolation and connectivity in shaping marine and insular biodiversity patterns and evolutionary signatures within species and species assemblages. Main types of variables contained: The coastline age raster contains cells with ages in thousands of years before present (bp), representing the time since the coastline was positioned in the raster cells, for the period between 26 ka and the present. A total of 53 shelf sea rasters (sea levels <140 m) are presented, showing the extent of land (1), shelf sea (0) and deep sea (NULL) per time step of 0.5 kyr from 26 ka to the present. Spatial location and grain: The coastline age raster and shelf sea rasters have a global representation. The spatial resolution is scaled to 120 arcsec (0.333° × 0.333°), implying cells of c. 3,704 m around the equator, 3,207 m around the tropics (±30°) and 1,853 m in the temperate zone (±60°). Time period and temporal resolution: The coastline age raster shows the age of coastline positions since the onset of the LGM 26 ka, with time steps of 0.5 kyr. The 53 shelf sea rasters show, for each time step of 0.5 kyr, the position of the shelf seas (seas shallower than 140 m) and the extent of land. Level of measurement: Both the coastline age raster and the 53 shelf sea rasters are provided as TIFF files with spatial reference system WGS84 (SRID 4326). The values of the coastline age raster per grid cell correspond to the most recent coastline position (in steps of 0.5 kyr). Values range from 0 (0 ka, i.e., present day) to 260 (26 ka) in bins of 5 (0.5 kyr). A value of "no data" is ascribed to pixels that have remained below sea level since 26 ka. Software format: All data processing was done using the R programming language.

4.
Sci Rep ; 13(1): 10383, 2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37369801

RESUMEN

This study reports on plastiglomerate and other new forms of plastic pollution in the tropical marine continent of Indonesia. Twenty-five samples were collected from an island beach in the Java Sea where plastiglomerate, plasticrusts, and pyroplastic were formed by the uncontrolled burning of plastic waste. The most common plastic types were polyethylene and polypropylene (PE/PP), as shown by ATR-FTIR spectroscopy. However, acrylates/polyurethane/varnish (PU) and a copolymer of styrene and acrylonitrile were found as well. This suggests that plastiglomerates can form from a wider variety of plastic polymers than previously reported. FTIR analysis also indicates thermo-oxidative weathering, making the charred plastic more brittle and susceptible to microplastic formation. A subset of the samples was analyzed for associated chemical contaminants. One plastiglomerate with a PU matrix showed high concentrations of phthalates. All samples had high concentrations of polycyclic aromatic hydrocarbons (PAHs), likely due to the burning of the plastic in open fires. The burning leads to a change in the physical and chemical properties of the plastics contained in the plastiglomerates. Plastiglomerate and plastic waste of similar origin are therefore often more weathered and contaminated with organic pollutants than their parent polymers. The highest PAH concentration was found in a plastitar sample. Plastitar is defined as an agglomerate of tar and plastics that adheres to coastal rocks. In contrast, our study documents a more mobile, clastic plastitar type. This clastic plastitar could pose an additional ecological risk because of its mobility. These new types of plastic pollution could be an important vector for chemical contamination of nearby coastal habitats such as coral reefs, seagrass meadows, and mangroves.

5.
Sci Rep ; 12(1): 10642, 2022 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-35739155

RESUMEN

Extreme positive Indian Ocean Dipole (pIOD) events are amplified by non-linear ocean-atmosphere interactions and are characterized by pronounced cooling in the eastern equatorial Indian Ocean. These non-linear feedbacks are not adequately represented in historical products of sea surface temperatures that underestimate the magnitude of extreme pIOD events. Here, we present a sea surface temperature (SST) reconstruction based on monthly coral Sr/Ca ratios measured in two coral cores from Enggano Island (Indonesia), that lies in the eastern pole of the IOD. The coral SST reconstruction extends from 1930 to 2008 and captures the magnitude of cooling during extreme pIOD events as shown in recent satellite and reanalysis data of SST that include ocean dynamics. The corals indicate that the 1961 pIOD event was at least as severe as the 1997 event, while the 1963 pIOD was more comparable to the 2006 event. The magnitude 1967 pIOD is difficult to assess at present due to poor replication between coral cores, and may be comparable to either 1997 or 2006. Cooling during the 1972 pIOD was short-lived and followed by pronounced warming, as seen in the moderate pIOD event of 1982. A combination of coral SST reconstructions and an extension of new reanalysis products of SST to historical time scales could help to better assess the severity and impact of past pIOD events such as the ones seen in the 1960s.


Asunto(s)
Antozoos , Animales , Atmósfera , Frío , Arrecifes de Coral , Océano Índico , Temperatura
6.
Sci Rep ; 11(1): 14952, 2021 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-34294817

RESUMEN

We present two 40 year records of monthly coral Sr/Ca ratios from the eastern pole of the Indian Ocean Dipole. A modern coral covers the period from 1968 to 2007. A sub-fossil coral derives from the medieval climate anomaly (MCA) and spans 1100-1140 AD. The modern coral records SST variability in the eastern pole of the Indian Ocean Dipole. A strong correlation is also found between coral Sr/Ca and the IOD index. The correlation with ENSO is asymmetric: the coral shows a moderate correlation with El Niño and a weak correlation with La Niña. The modern coral shows large interannual variability. Extreme IOD events cause cooling > 3 °C (1994, 1997) or ~ 2 °C (2006). In total, the modern coral indicates 32 warm/cool events, with 16 cool and 16 warm events. The MCA coral shows 24 warm/cool events, with 14 cool and 10 warm events. Only one cool event could be comparable to the positive Indian Ocean Dipole in 2006. The seasonal cycle of the MCA coral is reduced (< 50% of to the modern) and the skewness of the Sr/Ca data is lower. This suggests a deeper thermocline in the eastern Indian Ocean associated with a La Niña-like mean state in the Indo-Pacific during the MCA.


Asunto(s)
Antozoos/química , Calcio/análisis , Fósiles/historia , Estroncio/análisis , Animales , Historia Medieval , Océano Índico , Estaciones del Año , Temperatura
7.
Mar Pollut Bull ; 110(2): 694-700, 2016 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-27181035

RESUMEN

The ability of massive Porites corals to faithfully record temperature is assessed. Porites corals from Kepulauan Seribu were sampled from one inshore and one offshore site and analyzed for their Sr/Ca variation. The results show that Sr/Ca of the offshore coral tracked SST, while Sr/Ca variation of the inshore coral tracked ambient air temperature. In particular, the inshore SST variation is related to air temperature anomalies of the urban center of Jakarta. The latter we relate to air-sea interactions modifying inshore SST associated with the land-sea breeze mechanism and/or monsoonal circulation. The correlation pattern of monthly coral Sr/Ca with the Niño3.4 index and SEIO-SST reveals that corals in the Seribu islands region respond differently to remote forcing. An opposite response is observed for inshore and offshore corals in response to El Niño onset, yet similar to El Niño mature phase (December to February). SEIO SSTs co-vary strongly with SST and air temperature variability across the Seribu island reef complex. The results of this study clearly indicate that locations of coral proxy record in Indonesia need to be chosen carefully in order to identify the seasonal climate response to local and remote climate and anthropogenic forcing.


Asunto(s)
Aire/análisis , Antozoos/química , Calcio/análisis , Monitoreo del Ambiente/métodos , Agua de Mar/química , Estroncio/análisis , Temperatura , Animales , Antozoos/fisiología , Ciudades , El Niño Oscilación del Sur , Indonesia , Islas , Proyectos Piloto
8.
Nat Commun ; 3: 965, 2012 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-22828625

RESUMEN

The early last glacial termination was characterized by intense North Atlantic cooling and weak overturning circulation. This interval between ~18,000 and 14,600 years ago, known as Heinrich Stadial 1, was accompanied by a disruption of global climate and has been suggested as a key factor for the termination. However, the response of interannual climate variability in the tropical Pacific (El Niño-Southern Oscillation) to Heinrich Stadial 1 is poorly understood. Here we use Sr/Ca in a fossil Tahiti coral to reconstruct tropical South Pacific sea surface temperature around 15,000 years ago at monthly resolution. Unlike today, interannual South Pacific sea surface temperature variability at typical El Niño-Southern Oscillation periods was pronounced at Tahiti. Our results indicate that the El Niño-Southern Oscillation was active during Heinrich Stadial 1, consistent with climate model simulations of enhanced El Niño-Southern Oscillation variability at that time. Furthermore, a greater El Niño-Southern Oscillation influence in the South Pacific during Heinrich Stadial 1 is suggested, resulting from a southward expansion or shift of El Niño-Southern Oscillation sea surface temperature anomalies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA