Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Langmuir ; 40(14): 7384-7394, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38530344

RESUMEN

Photocatalytic technology is a popular research area for converting solar energy into environmentally friendly chemicals and is considered the greenest approach for producing H2O2. However, the corresponding reactive oxygen species (ROS) and pathway involved in the photocatalytic generation of H2O2 by the Bi2.15WO6-glucose system are still not clear. Quenching experiments have established that neither •OH nor h+ contribute to the formation of H2O2, and show that the formed surface superoxo (≡Bi-OO•) and peroxo (≡Bi-OOH) species are the predominant ROS in H2O2 generation. In addition, various characterizations indicate the enhanced electron-transfer on the surface of Bi2.15WO6 with increasing contents of glucose via the ligand-to-metal charge transfer pathway, confirming H-transfer from glucose to ≡Bi-OO• or ≡Bi-OOH. The increased production of H2O2 with decreasing bond dissociation energy (BDEO-H) values of various phenolic compounds again supports the H-transfer mechanism from phenolic compounds to ≡Bi-OO• and then to ≡Bi-OOH. DFT calculations further reveal that on the Bi2.15WO6 surface, oxygen is sequentially reduced to ≡Bi-OO• and ≡Bi-OOH, while H-transfer from H2O or glucose to ≡Bi-OO• and ≡Bi-OOH, resulting in the production of H2O2. The lower energy barrier of H-transfer from adsorbed glucose (0.636 eV) than that from H2O (1.157 eV) indicates that H-transfer is more favorable from adsorbed glucose. This work gives new insight into the photocatalytic generation of H2O2 by Bi2.15WO6 in the presence of glucose/phenolic compounds via the H-abstraction pathway.

2.
Langmuir ; 39(30): 10601-10610, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37467429

RESUMEN

Although the photocatalytic reduction of Cr(VI) to Cr(III) by traditional powder photocatalysts is a promising method, the difficulty and poor recovery of photocatalysts from water hinder their wide practical applications. Herein, we present that FeC2O4/Bi2.15WO6 (FeC2O4/BWO) composites were tightly bonded to modified polyvinylidene fluoride (PVDF) membranes by chemical grafting with the aid of polyvinyl alcohol (PVA) to form photocatalytic composite membranes (PVDF@PVA-FeC2O4/BWO). The contact angle of PVDF@PVA-FeC2O4/BWO (0.06 wt % of FeC2O4/BWO) is 48.0°, which is much lower than that of the pure PVDF membrane (80.5°). Meanwhile, the permeate flux of 61.43 g m-2 h-1 and water flux of 250.60 L m-2 h-1 were observed for PVDF@PVA-FeC2O4/BWO composite membranes. The tensile strength of composite membranes reached 48.84 MPa, which was 9.8 times higher than that of PVDF membrane. It was found that the PVDF@PVA-FeC2O4/BWO membrane exhibited excellent photocatalytic Cr(VI) reduction performance under both simulated and real sunlight irradiation. The adsorption for Cr(VI) by PVDF@PVA-FeC2O4/BWO can reach 47.6% in the dark process within 30 min, and the removal percentage of Cr(VI) could reach 100% with a rate constant k value of 0.2651 min-1 after 10 min of light exposure, indicating a synergistic effect of adsorption and photoreduction for Cr(VI) removal by the composite membrane. The PVDF@PVA-FeC2O4/BWO membrane had good stability and reusability after seven consecutive cycles. Most importantly, the influences of foreign ions on Cr(VI) reduction were investigated to mimic real sewage, which revealed that no obvious adverse effects can be found with the presence of common foreign ions in sewage. The photocatalytic membrane material developed in this study provides a new idea for treating Cr(VI)-containing wastewater and has a more significant application prospect.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA