Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Planta ; 260(2): 49, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38985323

RESUMEN

MAIN CONCLUSION: We comprehensively identified and analyzed the Snf2 gene family. Some Snf2 genes were involved in responding to salt stress based on the RNA-seq and qRT-PCR analysis. Sucrose nonfermenting 2 (Snf2) proteins are core components of chromatin remodeling complexes that not only alter DNA accessibility using the energy of ATP hydrolysis, but also play a critical regulatory role in growth, development, and stress response in eukaryotes. However, the comparative study of Snf2 gene family in the six Brassica species in U's triangle model remains unclear. Here, a total of 405 Snf2 genes were identified, comprising 53, 50, and 46 in the diploid progenitors: Brassica rapa (AA, 2n = 20), Brassica nigra (BB, 2n = 16), and Brassica oleracea (CC, 2n = 18), and 93, 91, and 72 in the allotetraploid: Brassica juncea (AABB, 2n = 36), Brassica napus (AACC, 2n = 38), and Brassica carinata (BBCC, 2n = 34), respectively. These genes were classified into six clades and further divided into 18 subfamilies based on their conserved motifs and domains. Intriguingly, these genes showed highly conserved chromosomal distributions and gene structures, indicating that few dynamic changes occurred during the polyploidization. The duplication modes of the six Brassica species were diverse, and the expansion of most Snf2 in Brassica occurred primarily through dispersed duplication (DSD) events. Additionally, the majority of Snf2 genes were under purifying selection during polyploidization, and some Snf2 genes were associated with various abiotic stresses. Both RNA-seq and qRT-PCR analysis showed that the expression of BnaSnf2 genes was significantly induced under salt stress, implying their involvement in salt tolerance response in Brassica species. The results provide a comprehensive understanding of the Snf2 genes in U's triangle model species, which will facilitate further functional analysis of the Snf2 genes in Brassica plants.


Asunto(s)
Brassica , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Estrés Salino , Brassica/genética , Brassica/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Salino/genética , Familia de Multigenes , Filogenia , Genoma de Planta/genética , Perfilación de la Expresión Génica
2.
Planta ; 259(5): 95, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38512412

RESUMEN

MAIN CONCLUSIONS: A novel image-based screening method for precisely identifying genotypic variations in rapeseed RSA under waterlogging stress was developed. Five key root traits were confirmed as good indicators of waterlogging and might be employed in breeding, particularly when using the MFVW approach. Waterlogging is a vital environmental factor that has detrimental effects on the growth and development of rapeseed (Brassica napus L.). Plant roots suffer from hypoxia under waterlogging, which ultimately confers yield penalty. Therefore, it is crucially important to understand the genetic variation of root system architecture (RSA) in response to waterlogging stress to guide the selection of new tolerant cultivars with favorable roots. This research was conducted to investigate RSA traits using image-based screening techniques to better understand how RSA changes over time during waterlogging at the seedling stage. First, we performed a t-test by comparing the relative root trait value between four tolerant and four sensitive accessions. The most important root characteristics associated with waterlogging tolerance at 12 h are total root length (TRL), total root surface area (TRSA), total root volume (TRV), total number of tips (TNT), and total number of forks (TNF). The root structures of 448 rapeseed accessions with or without waterlogging showed notable genetic diversity, and all traits were generally restrained under waterlogging conditions, except for the total root average diameter. Additionally, according to the evaluation and integration analysis of 448 accessions, we identified that five traits, TRL, TRSA, TRV, TNT, and TNF, were the most reliable traits for screening waterlogging-tolerant accessions. Using analysis of the membership function value (MFVW) and D-value of the five selected traits, 25 extremely waterlogging-tolerant materials were screened out. Waterlogging significantly reduced RSA, inhibiting root growth compared to the control. Additionally, waterlogging increased lipid peroxidation, accompanied by a decrease in the activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT). This study effectively improves our understanding of the response of RSA to waterlogging. The image-based screening method developed in this study provides a new scientific guidance for quickly examining the basic RSA changes and precisely predicting waterlogging-tolerant rapeseed germplasms, thus expanding the genetic diversity of waterlogging-tolerant rapeseed germplasm available for breeding.


Asunto(s)
Brassica napus , Brassica rapa , Fitomejoramiento , Plantones/fisiología , Fenotipo , Genotipo
3.
J Exp Bot ; 75(10): 2882-2899, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38421062

RESUMEN

The cultivated diploid Brassica oleracea is an important vegetable crop, but the genetic basis of its domestication remains largely unclear in the absence of high-quality reference genomes of wild B. oleracea. Here, we report the first chromosome-level assembly of the wild Brassica oleracea L. W03 genome (total genome size, 630.7 Mb; scaffold N50, 64.6 Mb). Using the newly assembled W03 genome, we constructed a gene-based B. oleracea pangenome and identified 29 744 core genes, 23 306 dispensable genes, and 1896 private genes. We re-sequenced 53 accessions, representing six potential wild B. oleracea progenitor species. The results of the population genomic analysis showed that the wild B. oleracea populations had the highest level of diversity and represents the most closely related population to modern-day horticultural B. oleracea. In addition, the WUSCHEL gene was found to play a decisive role in domestication and to be involved in cauliflower and broccoli curd formation. We also illustrate the loss of disease-resistance genes during selection for domestication. Our results provide new insights into the domestication of B. oleracea and will facilitate the future genetic improvement of Brassica crops.


Asunto(s)
Brassica , Productos Agrícolas , Domesticación , Genoma de Planta , Brassica/genética , Productos Agrícolas/genética , Cromosomas de las Plantas/genética
4.
Int J Mol Sci ; 24(19)2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37833952

RESUMEN

Rapeseed (Brassica napus L.) is one of the most important oil crops in China. Improving the oil production of rapeseed is an important way to ensure the safety of edible oil in China. Oil production is an important index that reflects the quality of rapeseed and is determined by the oil content and yield. Applying nitrogen is an important way to ensure a strong and stable yield. However, the seed oil content has been shown to be reduced in most rapeseed varieties after nitrogen application. Thus, it is critical to screen elite germplasm resources with stable or improved oil content under high levels of nitrogen, and to investigate the molecular mechanisms of the regulation by nitrogen of oil accumulation. However, few studies on these aspects have been published. In this review, we analyze the effect of nitrogen on the growth and development of rapeseed, including photosynthetic assimilation, substance distribution, and the synthesis of lipids and proteins. In this process, the expression levels of genes related to nitrogen absorption, assimilation, and transport changed after nitrogen application, which enhanced the ability of carbon and nitrogen assimilation and increased biomass, thus leading to a higher yield. After a crop enters the reproductive growth phase, photosynthates in the body are transported to the developing seed for protein and lipid synthesis. However, protein synthesis precedes lipid synthesis, and a large number of photosynthates are consumed during protein synthesis, which weakens lipid synthesis. Moreover, we suggest several research directions, especially for exploring genes involved in lipid and protein accumulation under nitrogen regulation. In this study, we summarize the effects of nitrogen at both the physiological and molecular levels, aiming to reveal the mechanisms of nitrogen regulation in oil accumulation and, thereby, provide a theoretical basis for breeding varieties with a high oil content.


Asunto(s)
Brassica napus , Brassica rapa , Brassica napus/genética , Brassica napus/metabolismo , Aceites de Plantas/metabolismo , Nitrógeno/metabolismo , Fitomejoramiento , Brassica rapa/metabolismo , Semillas/metabolismo
5.
Int J Mol Sci ; 24(9)2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-37175459

RESUMEN

Nitrogen (N) is one of the most important mineral elements for plant growth and development and a key factor for improving crop yield. Rapeseed, Brassica napus, is the largest oil crop in China, producing more than 50% of the domestic vegetable oil. However, high N fertilizer input with low utilization efficiency not only increases the production cost but also causes serious environmental pollution. Therefore, the breeding of rapeseed with high N efficiency is of great strategic significance to ensure the security of grain and oil and the sustainable development of the rapeseed industry. In order to provide reference for genetic improvement of rapeseed N-efficient utilization, in this article, we mainly reviewed the recent research progress of rapeseed N efficiency, including rapeseed N efficiency evaluation, N-efficient germplasm screening, and N-efficient physiological and molecular genetic mechanisms.


Asunto(s)
Brassica napus , Brassica rapa , Brassica napus/genética , Nitrógeno , Fitomejoramiento , Brassica rapa/genética , Aceites de Plantas
6.
Int J Mol Sci ; 24(4)2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36835496

RESUMEN

Brassica oleracea displays remarkable morphological variations. It intrigued researchers to study the underlying cause of the enormous diversification of this organism. However, genomic variations in complex heading traits are less known in B. oleracea. Herein, we performed a comparative population genomics analysis to explore structural variations (SVs) responsible for heading trait formation in B. oleracea. Synteny analysis showed that chromosomes C1 and C2 of B. oleracea (CC) shared strong collinearity with A01 and A02 of B. rapa (AA), respectively. Two historical events, whole genome triplication (WGT) of Brassica species and differentiation time between AA and CC genomes, were observed clearly by phylogenetic and Ks analysis. By comparing heading and non-heading populations of B. oleracea genomes, we found extensive SVs during the diversification of the B. oleracea genome. We identified 1205 SVs that have an impact on 545 genes and might be associated with the heading trait of cabbage. Overlapping the genes affected by SVs and the differentially expressed genes identified by RNA-seq analysis, we identified six vital candidate genes that may be related to heading trait formation in cabbage. Further, qRT-PCR experiments also verified that six genes were differentially expressed between heading leaves and non-heading leaves, respectively. Collectively, we used available genomes to conduct a comparison population genome analysis and identify candidate genes for the heading trait of cabbage, which provides insight into the underlying reason for heading trait formation in B. oleracea.


Asunto(s)
Brassica , Genoma de Planta , Filogenia , Brassica/genética , Sintenía
7.
Int J Mol Sci ; 23(21)2022 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-36361657

RESUMEN

Clubroot caused by Plasmodiophora brassicae led to a significant decrease in the yield and quality of Brassica napus, one of the most important oil crops in the world. JAZ proteins are an essential repressor of jasmonates (JAs) signaling cascades, which have been reported to regulate the resistance to P. brassicae in B. napus. In this study, we identified 51, 25 and 26 JAZ proteins in B. napus, B. rapa and B. oleracea, respectively. Phylogenetic analysis displayed that the notedJAZ proteins were divided into six groups. The JAZ proteins clustered in the same group shared a similar motif composition and distribution order. The 51 BnaJAZs were not evenly assigned on seventeen chromosomes in B. napus, except for A04 and C07. The BnaJAZs of the AtJAZ7/AtJAZ8 group presented themselves to be significantly up-regulated after inoculation by P. brassicae. Variation analysis in a population with a specific resistance performance in P. brassicae displayed a 64 bp translocation in BnaC03T0663300ZS (BnaJAZ8.C03, homologous to AtJAZ8) with an 8% reduction in the disease index on average. Through protein-protein interaction analysis, 65 genes were identified that might be involved in JAZ8 regulation of resistance to P. brassicae in B. napus, which provided new clues for understanding the resistance mechanism to P. brassicae.


Asunto(s)
Brassica napus , Plasmodiophorida , Plasmodiophorida/fisiología , Brassica napus/genética , Resistencia a la Enfermedad/genética , Filogenia , Enfermedades de las Plantas/genética
8.
Theor Appl Genet ; 134(8): 2517-2530, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33895853

RESUMEN

KEY MESSAGE: A major QTL controlling ovule abortion and SN was fine-mapped to a 80.1-kb region on A8 in rapeseed, and BnaA08g07940D and BnaA08g07950D are the most likely candidate genes. The seed number per silique (SN), an important yield determining trait of rapeseed, is the final consequence of a complex developmental process including ovule initiation and the subsequent ovule/seed development. To explore the genetic mechanism regulating the natural variation of SN and its related components, quantitative trait locus (QTL) mapping was conducted using a doubled haploid (DH) population derived from the cross between C4-146 and C4-58B, which showed significant differences in SN and aborted ovule number (AON), but no obvious differences in ovule number (ON). QTL analysis identified 19 consensus QTLs for six SN-related traits across three environments. A novel QTL on chromosome A8, un.A8, which associates with multiple traits, except for ON, was stably detected across the three environments. This QTL explained more than 50% of the SN, AON and percentage of aborted ovules (PAO) variations as well as a moderate contribution on silique length (SL) and thousand seed weight (TSW). The C4-146 allele at the locus increases SN and SL but decreases AON, PAO and TSW. Further fine mapping narrowed down this locus into an 80.1-kb interval flanked by markers BM1668 and BM1672, and six predicted genes were annotated in the delimited region. Expression analyses and DNA sequencing showed that two homologs of Arabidopsis photosystem I subunit F (BnaA08g07940D) and zinc transporter 10 precursor (BnaA08g07950D) were the most promising candidate genes underlying this locus. These results provide a solid basis for cloning un.A8 to reduce the ovule abortion and increase SN in the yield improvement of rapeseed.


Asunto(s)
Brassica napus/crecimiento & desarrollo , Mapeo Cromosómico/métodos , Cromosomas de las Plantas/genética , Regulación de la Expresión Génica de las Plantas , Óvulo Vegetal/fisiología , Proteínas de Plantas/metabolismo , Semillas/crecimiento & desarrollo , Brassica napus/genética , Clonación Molecular , Fenotipo , Proteínas de Plantas/genética , Semillas/genética
9.
New Phytol ; 226(4): 1055-1073, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32176333

RESUMEN

Plant oils are valuable commodities for food, feed, renewable industrial feedstocks and biofuels. To increase vegetable oil production, here we show that the nonspecific phospholipase C6 (NPC6) promotes seed oil production in the Brassicaceae seed oil species Arabidopsis, Camelina and oilseed rape. Overexpression of NPC6 increased seed oil content, seed weight and oil yield both in Arabidopsis and Camelina, whereas knockout of NPC6 decreased seed oil content and seed size. NPC6 is associated with the chloroplasts and microsomal membranes, and hydrolyzes phosphatidylcholine and galactolipids to produce diacylglycerol. Knockout and overexpression of NPC6 decreased and increased, respectively, the flux of fatty acids from phospholipids and galactolipids into triacylglycerol production. Candidate-gene association study in oilseed rape indicates that only BnNPC6.C01 of the four homeologues NPC6s is associated with seed oil content and yield. Haplotypic analysis indicates that the BnNPC6.C01 favorable haplotype can increase both seed oil content and seed yield. These results indicate that NPC6 promotes membrane glycerolipid turnover to accumulate TAG production in oil seeds and that NPC6 has a great application potential for oil yield improvement.


Asunto(s)
Brassicaceae , Brassicaceae/genética , Ácidos Grasos , Fosfolipasas , Aceites de Plantas , Plantas Modificadas Genéticamente , Semillas
10.
Plant Biotechnol J ; 17(12): 2313-2324, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31037811

RESUMEN

One of the most important goals in the breeding of oilseed crops, including Brassica napus, is to improve the quality of edible vegetable oil, which is mainly determined by the seed fatty acid composition, particularly the C18:1 content. Previous studies have indicated that the C18:1 content is a polygenic trait, and no stable quantitative trait loci (QTLs) except for FAD2 have been reported. By performing a GWAS using 375 low erucic acid B. napus accessions genotyped with the Brassica 60K SNP array and constructing a high-density SNP-based genetic map of a 150 DH population, we identified a novel QTL on the A9 chromosome. The novel locus could explain 11.25%, 5.72% and 6.29% of phenotypic variation during three consecutive seasons and increased the C18:1 content by approximately 3%-5%. By fine mapping and gene expression analysis, we found three potential candidate genes and verified the fatty acids in a homologous gene mutant of Arabidopsis. A metal ion-binding protein was found to be the most likely candidate gene in the region. Thus, the C18:1 content can be further increased to about 80% with this novel locus together with FAD2 mutant allele without compromise of agronomic performance. A closely linked marker, BnA129, for this novel QTL (OLEA9) was developed so that we can effectively identify materials with high C18:1 content at an early growth stage by marker-assisted selection. Our results may also provide new insight for understanding the complex genetic mechanism of fatty acid metabolism.


Asunto(s)
Brassica napus/genética , Ácido Oléico/química , Sitios de Carácter Cuantitativo , Brassica napus/química , Mapeo Cromosómico , Cromosomas de las Plantas , Semillas
11.
Int J Mol Sci ; 20(8)2019 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-31018533

RESUMEN

Vegetable oil is an essential constituent of the human diet and renewable raw material for industrial applications. Enhancing oil production by increasing seed oil content in oil crops is the most viable, environmentally friendly, and sustainable approach to meet the continuous demand for the supply of vegetable oil globally. An in-depth understanding of the gene networks involved in oil biosynthesis during seed development is a prerequisite for breeding high-oil-content varieties. Rapeseed (Brassica napus) is one of the most important oil crops cultivated on multiple continents, contributing more than 15% of the world's edible oil supply. To understand the phasic nature of oil biosynthesis and the dynamic regulation of key pathways for effective oil accumulation in B. napus, comparative transcriptomic profiling was performed with developing seeds and silique wall (SW) tissues of two contrasting inbred lines with ~13% difference in seed oil content. Differentially expressed genes (DEGs) between high- and low-oil content lines were identified across six key developmental stages, and gene enrichment analysis revealed that genes related to photosynthesis, metabolism, carbohydrates, lipids, phytohormones, transporters, and triacylglycerol and fatty acid synthesis tended to be upregulated in the high-oil-content line. Differentially regulated DEG patterns were revealed for the control of metabolite and photosynthate production in SW and oil biosynthesis and accumulation in seeds. Quantitative assays of carbohydrates and hormones during seed development together with gene expression profiling of relevant pathways revealed their fundamental effects on effective oil accumulation. Our results thus provide insights into the molecular basis of high seed oil content (SOC) and a new direction for developing high-SOC rapeseed and other oil crops.


Asunto(s)
Brassica napus/genética , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Aceites de Plantas/metabolismo , Semillas/genética , Transcriptoma , Brassica napus/metabolismo , Perfilación de la Expresión Génica , Genes de Plantas , Redes y Vías Metabólicas , Semillas/metabolismo
12.
Theor Appl Genet ; 129(6): 1203-15, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26912143

RESUMEN

KEY MESSAGE: A set of additive loci for seed oil content were identified using association mapping and one of the novel loci on the chromosome A5 was validated by linkage mapping. Increasing seed oil content is one of the most important goals in the breeding of oilseed crops including Brassica napus, yet the genetic basis for variations in this important trait remains unclear. By genome-wide association study of seed oil content using 521 B. napus accessions genotyped with the Brassica 60K SNP array, we identified 50 loci significantly associated with seed oil content using three statistical models, the general linear model, the mixed linear model and the Anderson-Darling test. Together, the identified loci could explain approximately 80 % of the total phenotypic variance, and 29 of these loci have not been reported previously. Furthermore, a novel locus on the chromosome A5 that could increase 1.5-1.7 % of seed oil content was validated in an independent bi-parental linkage population. Haplotype analysis showed that the favorable alleles for seed oil content exhibit cumulative effects. Our results thus provide valuable information for understanding the genetic control of seed oil content in B. napus and may facilitate marker-based breeding for a higher seed oil content in this important oil crop.


Asunto(s)
Brassica napus/genética , Aceites de Plantas/análisis , Sitios de Carácter Cuantitativo , Semillas/química , Brassica napus/química , Mapeo Cromosómico , Cromosomas de las Plantas , Estudios de Asociación Genética , Ligamiento Genético , Genotipo , Haplotipos , Modelos Estadísticos , Fitomejoramiento , Polimorfismo de Nucleótido Simple
13.
BMC Genomics ; 16: 409, 2015 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-26018616

RESUMEN

BACKGROUND: Single nucleotide polymorphism (SNP) markers have a wide range of applications in crop genetics and genomics. Due to their polyploidy nature, many important crops, such as wheat, cotton and rapeseed contain a large amount of repeat and homoeologous sequences in their genomes, which imposes a huge challenge in high-throughput genotyping with sequencing and/or array technologies. Allotetraploid Brassica napus (AACC, 2n = 4x = 38) comprises of two highly homoeologous sub-genomes derived from its progenitor species B. rapa (AA, 2n = 2x = 20) and B. oleracea (CC, 2n = 2x = 18), and is an ideal species to exploit methods for reducing the interference of extensive inter-homoeologue polymorphisms (mHemi-SNPs and Pseudo-simple SNPs) between closely related sub-genomes. RESULTS: Based on a recent B. napus 6K SNP array, we developed a bi-filtering procedure to identify unauthentic lines in a DH population, and mHemi-SNPs and Pseudo-simple SNPs in an array data matrix. The procedure utilized both monomorphic and polymorphic SNPs in the DH population and could effectively distinguish the mHemi-SNPs and Pseudo-simple SNPs that resulted from superposition of the signals from multiple SNPs. Compared with conventional procedure for array data processing, the bi-filtering method could minimize the pseudo linkage relationship caused by the mHemi-SNPs and Pseudo-simple SNPs, thus improving the quality of SNP genetic map. Furthermore, the improved genetic map could increase the accuracies of mapping of QTLs as demonstrated by the ability to eliminate non-real QTLs in the mapping population. CONCLUSIONS: The bi-filtering analysis of the SNP array data represents a novel approach to effectively assigning the multi-loci SNP genotypes in polyploid B. napus and may find wide applications to SNP analyses in polyploid crops.


Asunto(s)
Brassica napus/genética , Biología Computacional/métodos , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Polimorfismo de Nucleótido Simple , Genoma de Planta , Genotipo , Mapeo Físico de Cromosoma , Poliploidía , Sitios de Carácter Cuantitativo , Análisis de Secuencia de ADN/métodos
14.
Plants (Basel) ; 13(14)2024 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-39065517

RESUMEN

In China, saline-alkali lands constitute 5.01% of the total land area, having a significant impact on both domestic and international food production. Rapeseed (Brassica napus L.), as one of the most important oilseed crops in China, has garnered considerable attention due to its potential adaptability to saline conditions. Breeding and improving salt-tolerant varieties is a key strategy for the effective utilization of saline lands. Hence, it is important to conduct comprehensive research into the adaptability and salt tolerance mechanisms of Brassica napus in saline environments as well as to breed novel salt-tolerant varieties. This review summarizes the molecular mechanism of salt tolerance, physiological and phenotypic indexes, research strategies for the screening of salt-tolerant germplasm resources, and genetic engineering tools for salt stress in Brassica napus. It also introduces various agronomic strategies for applying exogenous substances to alleviate salt stress and provide technological tools and research directions for future research on salt tolerance in Brassica napus.

15.
Int J Biol Macromol ; 270(Pt 1): 132206, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38735610

RESUMEN

The isochorismate synthase (ICS) proteins are essential regulators of salicylic acid (SA) synthesis, which has been reported to regulate resistance to biotic and abiotic stresses in plants. Clubroot caused by Plasmodiophora brassicae is a common disease that threatens the yield and quality of Oilseed rape (Brassica napus L.). Exogenous application of salicylic acid reduced the incidence of clubroot in oilseed rape. However, the potential importance of the ICS genes family in B. napus and its diploid progenitors has been unclear. Here, we identified 16, 9, and 10 ICS genes in the allotetraploid B. napus, diploid ancestor Brassica rapa and Brassica oleracea, respectively. These ICS genes were classified into three subfamilies (I-III), and member of the same subfamilies showed relatively conserved gene structures, motifs, and protein domains. Furthermore, many hormone-response and stress-related promoter cis-acting elements were observed in the BnaICS genes. Exogenous application of SA delayed the growth of clubroot galls, and the expression of BnaICS genes was significantly different compared to the control groups. Protein-protein interaction analysis identified 58 proteins involved in the regulation of ICS in response to P. brassicae in B. napus. These results provide new clues for understanding the resistance mechanism to P. brassicae.


Asunto(s)
Brassica napus , Resistencia a la Enfermedad , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas , Plasmodiophorida , Brassica napus/parasitología , Brassica napus/genética , Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Enfermedades de las Plantas/parasitología , Enfermedades de las Plantas/genética , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/química , Familia de Multigenes , Ácido Salicílico/farmacología , Ácido Salicílico/metabolismo , Genoma de Planta , Transferasas Intramoleculares
16.
Nat Commun ; 15(1): 5059, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38871727

RESUMEN

Sclerotinia stem rot (SSR), caused by the necrotrophic fungus Sclerotinia sclerotiorum, is one of the most devastating diseases for several major oil-producing crops. Despite its impact, the genetic basis of SSR resistance in plants remains poorly understood. Here, through a genome-wide association study, we identify a key gene, BnaA07. MKK9, that encodes a mitogen-activated protein kinase kinase that confers SSR resistance in oilseed rape. Our functional analyses reveal that BnaA07.MKK9 interacts with BnaC03.MPK3 and BnaC03.MPK6 and phosphorylates them at the TEY activation motif, triggering a signaling cascade that initiates biosynthesis of ethylene, camalexin, and indole glucosinolates, and promotes accumulation of H2O2 and the hypersensitive response, ultimately conferring resistance. Furthermore, variations in the coding sequence of BnaA07.MKK9 alter its kinase activity and improve SSR resistance by ~30% in cultivars carrying the advantageous haplotype. These findings enhance our understanding of SSR resistance and may help engineer novel diversity for future breeding of oilseed rape.


Asunto(s)
Ascomicetos , Brassica napus , Resistencia a la Enfermedad , Estudio de Asociación del Genoma Completo , Enfermedades de las Plantas , Proteínas de Plantas , Ascomicetos/genética , Ascomicetos/patogenicidad , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/genética , Resistencia a la Enfermedad/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Brassica napus/microbiología , Brassica napus/genética , Brassica napus/inmunología , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Regulación de la Expresión Génica de las Plantas , Fosforilación , Variación Genética
17.
BMC Genet ; 13: 105, 2012 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-23216693

RESUMEN

BACKGROUND: Map-based cloning of quantitative trait loci (QTLs) in polyploidy crop species remains a challenge due to the complexity of their genome structures. QTLs for seed weight in B. napus have been identified, but information on candidate genes for identified QTLs of this important trait is still rare. RESULTS: In this study, a whole genome genetic linkage map for B. napus was constructed using simple sequence repeat (SSR) markers that covered a genetic distance of 2,126.4 cM with an average distance of 5.36 cM between markers. A procedure was developed to establish colinearity of SSR loci on B. napus with its two progenitor diploid species B. rapa and B. oleracea through extensive bioinformatics analysis. With the aid of B. rapa and B. oleracea genome sequences, the 421 homologous colinear loci deduced from the SSR loci of B. napus were shown to correspond to 398 homologous loci in Arabidopsis thaliana. Through comparative mapping of Arabidopsis and the three Brassica species, 227 homologous genes for seed size/weight were mapped on the B. napus genetic map, establishing the genetic bases for the important agronomic trait in this amphidiploid species. Furthermore, 12 candidate genes underlying 8 QTLs for seed weight were identified, and a gene-specific marker for BnAP2 was developed through molecular cloning using the seed weight/size gene distribution map in B. napus. CONCLUSIONS: Our study showed that it is feasible to identify candidate genes of QTLs using a SSR-based B. napus genetic map through comparative mapping among Arabidopsis and B. napus and its two progenitor species B. rapa and B. oleracea. Identification of candidate genes for seed weight in amphidiploid B. napus will accelerate the process of isolating the mapped QTLs for this important trait, and this approach may be useful for QTL identification of other traits of agronomic significance.


Asunto(s)
Brassica napus/genética , Mapeo Cromosómico/métodos , Genes de Plantas , Sitios de Carácter Cuantitativo , Semillas/genética , Arabidopsis/genética , Brassica/genética , Poliploidía
18.
Biotechnol Biofuels ; 14(1): 49, 2021 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-33640013

RESUMEN

BACKGROUND: Lipid transporters play an essential role in lipid delivery and distribution, but their influence on seed oil production in oilseed crops is not well studied. RESULTS: Here, we examined the effect of two lipid transporters, FAX1 (fatty acid export1) and ABCA9 (ATP-binding cassette transporter subfamily A9) on oil production and lipid metabolism in the oilseed plant Camelina sativa. Overexpression (OE) of FAX1 and ABCA9 increased seed weight and size, with FAX1-OEs and ABCA9-OEs increasing seed length and width, respectively, whereas FAX1/ABCA9-OEs increasing both. FAX1-OE and ABCA9-OE displayed additive effects on seed oil content and seed yield. Also, OE of FAX1 and ABCA9 affected membrane lipid composition in developing pods, especially on phosphatidylcholine, phosphatidylethanolamine, and phosphatidylglycerol. The expression of some genes involved in seed oil synthesis, such as DGAT2, PDAT1, and LEC1, was increased in developing seeds of FAX1- and/or ABCA9-OEs. CONCLUSION: These results indicate that increased expression of FAX1 and ABCA9 can potentially be applied to improving camelina oil production.

19.
Theor Appl Genet ; 121(7): 1289-301, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20574694

RESUMEN

Seed weight is an important component of grain yield in oilseed rape (Brassica napus L.), but the genetic basis for the important quantitative trait is still not clear. In order to identify the genes for seed weight in oilseed rape, QTL mapping for thousand seed weight (TSW) was conducted with a doubled haploid (DH) population and an F(2) population. A complete linkage map of the DH population was constructed using 297 simple sequence repeat (SSR) markers. Among nine TSW QTLs detected, two major QTLs, TSWA7a and TSWA7b, were stably identified across years and collectively explained 27.6-37.9% of the trait variation in the DH population. No significant epistatic interactions for TSW detected in the DH population indicate that the seed weight variation may be primarily attributed to additive effects. The stability and significance of TSWA7a and TSWA7b were further validated in the F(2) population with different genetic backgrounds. By cloning BnMINI3a and BnTTG2a, two B. napus homologous genes to Arabidopsis thaliana, allele-specific markers were developed for TSWA5b and TSWA5c, two TSW QTLs on A5, respectively. The importance of the major and minor QTLs identified was further demonstrated by analysis of the allelic effects on TSW in the DH population.


Asunto(s)
Brassica napus/genética , Mapeo Cromosómico/métodos , Sitios de Carácter Cuantitativo/genética , Semillas/crecimiento & desarrollo , Semillas/genética , Alelos , Repeticiones de Minisatélite , Fenotipo
20.
Plants (Basel) ; 9(5)2020 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-32443904

RESUMEN

Patatinrelated phospholipases (pPLAs) are acylhydrolyzing enzymes implicated in various processes, including lipid metabolism, signal transduction, plant growth and stress responses, but the function for many specific pPLAs in plants remains unknown. Here we determine the effect of patatinrelated phospholipase A pPLAIIIγ on Arabidopsis response to abiotic stress. Knockout of pPLAIIIγ rendered plants more sensitive whereas overexpression of pPLAIIIγ enhanced plant tolerance to NaCl and drought in seed germination and seedling growth. The pPLAIIIγknockout and overexpressing seedlings displayed a lower and higher level of lysolipids and free fatty acids than that of wildtype plants in response to NaCl stress, respectively. These results indicate that pPLAIIIγ acts a positive regulator of salt and osmatic stress tolerance in Arabidopsis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA