Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Environ Res ; 248: 118386, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38316387

RESUMEN

In the context of global warming, increasingly widespread and frequent freezing and thawing cycles (FTCs) will have profound effects on the biogeochemical cycling of soil carbon and nitrogen. FTCs can increase soil greenhouse gas (GHG) emissions by reducing the stability of soil aggregates, promoting the release of dissolved organic carbon, decreasing the number of microorganisms, inducing cell rupture, and releasing carbon and nitrogen nutrients for use by surviving microorganisms. However, the similarity and disparity of the mechanisms potentially contributing to changes in GHGs have not been systematically evaluated. The present study consolidates the most recent findings on the dynamics of soil carbon and nitrogen, as well as GHGs, in relation to FTCs. Additionally, it analyzes the impact of FTCs on soil GHGs in a systematic manner. In this study, particular emphasis is given to the following: (i) the reaction mechanism involved; (ii) variations in soil composition in different types of land (e.g., forest, peatland, farmland, and grassland); (iii) changes in soil structure in response to cycles of freezing temperatures; (iv) alterations in microbial biomass and community structure that may provide further insight into the fluctuations in GHGs after FTCs. The challenges identified included the extension of laboratory-scale research to ecosystem scales, the performance of in-depth investigation of the coupled effects of carbon, nitrogen, and water in the freeze-thaw process, and analysis of the effects of FTCs through the use of integrated research tools. The results of this study can provide a valuable point of reference for future experimental designs and scientific investigations and can also assist in the analysis of the attributes of GHG emissions from soil and the ecological consequences of the factors that influence these emissions in the context of global permafrost warming.


Asunto(s)
Gases de Efecto Invernadero , Suelo , Carbono/análisis , Dióxido de Carbono/análisis , Ecosistema , Congelación , Gases de Efecto Invernadero/análisis , Metano/análisis , Nitrógeno/análisis , Óxido Nitroso
2.
J Hazard Mater ; 446: 130689, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36586334

RESUMEN

Hydrogel, a common carrier of photocatalyst that suffers from compromised catalytic efficiency, is still far from practical application. Herein, based on "computer chip-inspired design", a novel nanocellulose/carbon dots hydrogel (NCH) was fabricated as superior intensifier instead of common carrier of sodium titanate nanofibre (STN), where carbon dots (CDs) enhanced amino group-induced adsorption for Cr(VI), promoted photocatalytic properties of STN via transferring the photogenerated electron-hole pairs and improved amino group-induced desorption for reduced product (Cr(III)) via electrostatic repulsion, showing an efficiency of 1 + 1 > 2. Adsorption and photocatalysis experiments demonstrated superior removal performance of the NCH incorporating STN, as shown by theoretical maximum adsorption capacity of 425.74 mg/g and kinetic constant of 0.0374 min-1 in the photocatalytic process, which was nearly 6.6 and 7.3 times of STN. A series of experiments was conducted to confirm the novel mechanism of CDs-enhanced adsorption-photocatalysis-desorption synergy. This work not only provides new insights into the fabrication of a superior intensifier for nanosized photocatalyst, but also proposes one new mechanism of CDs-enhanced adsorption-photocatalysis-desorption synergy, which is helpful for designing and optimizing nanosized photocatalyst.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA