Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 22(46): 26828-26837, 2020 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-33232401

RESUMEN

In this study, a quartz crystal microbalance (QCM) in situ method is used to study the kinetic and thermodynamic processes of the adsorption of ruthenium-based dyes (N719, N3, N749), and the co-adsorbent chenodeoxycholic acid (CDCA) on the TiO2 film surface. The results of the kinetic studies show that the adsorption rate of N749 is slightly higher than the other two dyes, and the adsorption rate of CDCA is more sensitive to temperature change. The adsorption mechanism of the dye and CDCA on the surface of TiO2 can be reasonably inferred based on the result of the activation energy. The isotherm adsorption model studies show that the ratio of the number of surface molecules (296 K) is n(N719) : n(N3) : n(N749) : n(CDCA) = 0.69 : 1.48 : 0.50 : 1. The Keq value of CDCA is about two orders of magnitude smaller than that of all the dye molecules, which indicates that the adsorption strength of CDCA is much weaker than that of the dye molecules. Thermodynamic studies show that the adsorption reaction is an endothermic reaction. The ΔS is ΔS(N3 = 143.11 J mol-1) > ΔS(N719 = 112.72 J mol-1) > ΔS(N749 = 109.43 J mol-1) > ΔS(CDCA = 96.14 J mol-1). The Gibbs free energy ΔG is negative, and indicates that the adsorption reaction of the four molecules on the surface of the TiO2 film is spontaneous. The results of this paper show that the tedious and lengthy experimental process of the traditional method can be simplified by QCM. In addition, the development of this study provides a certain theoretical and experimental basis for future studies on the interaction mechanism between dyes and co-adsorbents.

2.
Phys Chem Chem Phys ; 22(7): 3784-3788, 2020 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-32037429

RESUMEN

This communication uses electrochemical quartz crystal microbalance (EQCM) in combination with the potentiostatic method to study the in situ exchange mechanism for dye molecules and cations on the nano-film surface under a constant potential. The relationship between dye molecule desorption mass and charge was analyzed. A theoretical model was established to obtain the important parameters of cation exchange number and apparent valence electron number during dye desorption, and the microscopic desorption mechanism of the dye is further revealed.

3.
Materials (Basel) ; 15(10)2022 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-35629653

RESUMEN

This paper attempted to establish a relationship between the morphology, microstructure and mechanical properties of a laser lap welded joint (WJ) of 780 duplex-phase (DP) steel under different welding parameters. The experimental results showed that the microstructure of the heat-affected zone (HAZ) of all the WJs were tempered martensite and equiaxed ferrite. The microstructure at the fusion zone (FZ) in all the WJs was dominated by lath martensite and ferrite, and the grain size of the FZ was larger than that in the base materials (BMs). The mechanical properties of the welded joints were tested by a universal testing machine, and the changing law of lap tensile resistance with the laser-welding parameters was analyzed. The results show that there was a linear relationship between the width of the weld and the tensile-shear forces of the weld, and the penetration of the weld had no obvious effect on the tensile-shear forces of the weld. A binary linear-regression equation was established to reveal the degree of influence of welding speed and laser power on the mechanical properties of WJs. It was found that the laser power had a greater influence on the mechanical properties of WJs than the welding speed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA