Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
FASEB J ; 34(11): 15252-15268, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32959379

RESUMEN

Sphingolipids have been implicated in mammalian placental development and function, but their regulation in the placenta remains unclear. Herein we report that alkaline ceramidase 2 (ACER2) plays a key role in sustaining the integrity of the placental vasculature by regulating the homeostasis of sphingolipids in mice. The mouse alkaline ceramidase 2 gene (Acer2) is highly expressed in the placenta between embryonic day (E) 9.5 and E12.5. Acer2 deficiency in both the mother and fetus decreases the placental levels of sphingolipids, including sphingoid bases (sphingosine and dihydrosphingosine) and sphingoid base-1-phosphates (sphingosine-1-phosphate and dihydrosphingosine-1-phosphate) and results in the in utero death of ≈50% of embryos at E12.5 whereas Acer2 deficiency in either the mother or fetus has no such effects. Acer2 deficiency causes hemorrhages from the maternal vasculature in the junctional and/or labyrinthine zones in E12.5 placentas. Moreover, hemorrhagic but not non-hemorrhagic Acer2-deficient placentas exhibit an expansion of parietal trophoblast giant cells with a concomitant decrease in the area of the fetal blood vessel network in the labyrinthine zone, suggesting that Acer2 deficiency results in embryonic lethality due to the atrophy of the fetal blood vessel network in the placenta. Taken together, these results suggest that ACER2 sustains the integrity of the placental vasculature by controlling the homeostasis of sphingolipids in mice.


Asunto(s)
Ceramidasa Alcalina/fisiología , Hemorragia/patología , Lisofosfolípidos/metabolismo , Placenta/patología , Esfingolípidos/metabolismo , Esfingosina/análogos & derivados , Enfermedades Vasculares/patología , Animales , Femenino , Hemorragia/etiología , Hemorragia/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Placenta/metabolismo , Embarazo , Esfingosina/metabolismo , Enfermedades Vasculares/etiología , Enfermedades Vasculares/metabolismo
2.
Cancer Discov ; 14(5): 737-751, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38230747

RESUMEN

Gain-of-function mutations activating JAK/STAT signaling are seen in the majority of patients with myeloproliferative neoplasms (MPN), most commonly JAK2V617F. Although clinically approved JAK inhibitors improve symptoms and outcomes in MPNs, remissions are rare, and mutant allele burden does not substantively change with chronic therapy. We hypothesized this is due to limitations of current JAK inhibitors to potently and specifically abrogate mutant JAK2 signaling. We therefore developed a conditionally inducible mouse model allowing for sequential activation, and then inactivation, of Jak2V617F from its endogenous locus using a combined Dre-rox/Cre-lox dual-recombinase system. Jak2V617F deletion abrogates MPN features, induces depletion of mutant-specific hematopoietic stem/progenitor cells, and extends overall survival to an extent not observed with pharmacologic JAK inhibition, including when cooccurring with somatic Tet2 loss. Our data suggest JAK2V617F represents the best therapeutic target in MPNs and demonstrate the therapeutic relevance of a dual-recombinase system to assess mutant-specific oncogenic dependencies in vivo. SIGNIFICANCE: Current JAK inhibitors to treat myeloproliferative neoplasms are ineffective at eradicating mutant cells. We developed an endogenously expressed Jak2V617F dual-recombinase knock-in/knock-out model to investigate Jak2V617F oncogenic reversion in vivo. Jak2V617F deletion abrogates MPN features and depletes disease-sustaining MPN stem cells, suggesting improved Jak2V617F targeting offers the potential for greater therapeutic efficacy. See related commentary by Celik and Challen, p. 701. This article is featured in Selected Articles from This Issue, p. 695.


Asunto(s)
Janus Quinasa 2 , Trastornos Mieloproliferativos , Animales , Humanos , Ratones , Modelos Animales de Enfermedad , Células Madre Hematopoyéticas/metabolismo , Janus Quinasa 2/genética , Janus Quinasa 2/metabolismo , Mutación , Trastornos Mieloproliferativos/genética , Trastornos Mieloproliferativos/tratamiento farmacológico , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA