RESUMEN
Cerebellum has been implicated in drug addiction; however, its underlying cellular populations and neuronal circuitry remain largely unknown. In the current study, we identified a neural pathway from tyrosine hydroxylase (TH)-positive Purkinje cells (PCTH+) in cerebellar lobule VI to calcium/calmodulin-dependent protein kinase II (CaMKII)-positive glutamatergic neurons in the medial cerebellar nucleus (MedCaMKII), forming the lobule VI PCTH+-MedCaMKII pathway in male mice. In naive male mice, inhibition of PCTH+ neurons activated Med neurons. During conditioned place preference (CPP) training, exposure to methamphetamine (METH) inhibited lobule VI PCTH+ neurons while excited MedCaMKII neurons in mice. Silencing MedCaMKII using a tetanus toxin light chain (tettox) suppressed the acquisition of METH CPP in mice but resulted in motor coordination deficits in naive mice. In contrast, activating lobule VI PCTH+ terminals within Med inhibited the activity of Med neurons and subsequently blocked the acquisition of METH CPP in mice without affecting motor coordination, locomotor activity, and sucrose reinforcements in naive mice. Our findings identified a novel lobule VI PCTH+-MedCaMKII pathway within the cerebellum and explored its role in mediating the acquisition of METH-preferred behaviors.
Asunto(s)
Estimulantes del Sistema Nervioso Central , Metanfetamina , Animales , Masculino , Ratones , Metanfetamina/farmacología , Tirosina 3-Monooxigenasa/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Refuerzo en Psicología , Cerebelo/metabolismo , Estimulantes del Sistema Nervioso Central/farmacologíaRESUMEN
Adolescent cocaine abuse increases the risk for developing addiction in later life, but the underlying molecular mechanism remains poorly understood. Here, we establish adolescent cocaine-exposed (ACE) male mouse models. A subthreshold dose of cocaine (sdC) treatment, insufficient to produce conditioned place preference (CPP) in adolescent mice, induces CPP in ACE mice during adulthood, along with more activated CaMKII-positive neurons, higher dual specificity protein kinase phosphatase-1 (Dusp1) mRNA, lower DUSP1 activity, and lower DUSP1 expression in CaMKII-positive neurons in the medial prefrontal cortex (mPFC). Overexpressing DUSP1 in CaMKII-positive neurons suppresses neuron activity and blocks sdC-induced CPP in ACE mice during adulthood. On the contrary, depleting DUSP1 in CaMKII-positive neurons activates more neurons and further enhances sdC-induced behavior in ACE mice during adulthood. Also, ERK1/2 might be a downstream signal of DUSP1 in the process. Our findings reveal a role of mPFC DUSP1 in ACE-induced higher sensitivity to the drug in adult mice. DUSP1 might be a potential pharmacological target to predict or treat the susceptibility to addictive drugs caused by adolescent substance use.
Asunto(s)
Trastornos Relacionados con Cocaína , Cocaína , Ratones , Masculino , Animales , Cocaína/farmacología , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Corteza Prefrontal , Neuronas/metabolismoRESUMEN
Methamphetamine (METH) is a commonly abused addictive psychostimulant, and METH-induced neurotoxic and behavioural deficits are in a sex-specific manner. However, there is lack of biomarkers to evaluate METH addiction in clinical practice, especially for gender differences. We utilized ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) to detect the serum metabolomics in METH addicts and controls, specially exploring the sex-specific metabolic alterations by METH abuse. We found that many differently expressed metabolites in METH addicts related to metabolisms of amino acid, energy, vitamin and neurological disorders. Further, METH abuse caused different patterns of metabolomics in a sex-specific manner. As to amino acid metabolism, L-phenylalanine, L-tryptophan and L-histidine in serum of male addicts and betaine in serum of female addicts were significantly changed by METH use. In addition, it seemed that purine and pyrimidine-related metabolites (e.g., xanthosine and adenosine 5'-monophosphate) in male and the metabolites of hormone (e.g., cortisol) and folate biosynthesis (e.g., 7,8-dihydrobiopterin and 4-hydroxybenzoic acid) in female were more sensitive to METH addiction. Our findings revealed that L-glutamic acid, L-aspartic acid, alpha-ketoglutarate acid and citric acid may be potential biomarkers for monitoring METH addiction in clinic. Considering sex-specific toxicity by METH, the metabolites of purine and pyrimidine metabolism in male and those of stress-related hormones in female may be used to facilitate the accurate diagnosis and treatment for METH addicts of different genders.
Asunto(s)
Trastornos Relacionados con Anfetaminas , Metanfetamina , Femenino , Masculino , Humanos , Metanfetamina/farmacología , Espectrometría de Masas en Tándem , Biomarcadores/metabolismo , Purinas , Aminoácidos , PirimidinasRESUMEN
To investigate the stability and electrical and physical properties of undoped CuO and CuO doped with rare earth elements, electronic structures and elastic constants were calculated using first-principles density functional theory. Additionally, experimental verification was carried out on AgCuO and AgCuO-X (La, Ce, Y) electrical contacts, which were prepared using sol-gel and powder metallurgy methods. The contacts were tested under an 18 V/15 A DC resistive load using the JF04D contact material testing system. Arc parameters were analyzed, and three-dimensional surface profilometry and scanning electron microscopy were used to study the altered erosion morphology of the electrically contacted materials; moreover, the potential mechanisms behind their arc erosion behavior were investigated in depth. The results demonstrate that the doping of rare earth elements can improve the electrical conductivity and physical properties of the contacts, optimize the arc parameters, and enhance their resistance to arc erosion. Notably, AgCuO-Ce exhibited the highest electrical conductivity and the least amount of material transfer; moreover, it had excellent arc time and energy parameters, resulting in the best resistance to arc erosion. This study provides a theoretical basis for the screening of doping elements to enhance the performance of AgCuO contact materials and offers new ideas and scientific references for this field.
Asunto(s)
Electricidad , Metales de Tierras Raras , Conductividad Eléctrica , Cobre , ElectrónicaRESUMEN
Paternal methamphetamine (METH) exposure results in long-term behavioural deficits in the sub-generations with a sex difference. Here, we aim to investigate the sex-specific neurobehavioural outcomes in the first-generation offspring mice (F1 mice) paternally exposed to METH prior to conception and explore the underlying brain mechanisms. We found that paternal METH exposure increased anxiety-like behaviours and spatial memory deficits only in female F1 mice and caused depression-like behaviours in the offspring without sex-specific differences. In parallel, METH-sired F1 mice exhibited sex-specific brain activity pattern in response to mild stimulus (in water at room temperature for 3 min). Overall, paternal METH exposure caused a blunting phenomenon of prelimbic cortex (PrL), infralimbic cortex (IL) and nucleus accumbens (NAc) core in both male and female F1 mice, as indicated by the decreased c-Fos levels under mild stimulus. Of note, the activity of central nucleus of the amygdala (CeA) by mild stimulus was triggered in male but suppressed in female F1 mice, whereas the neurons of orbitofrontal cortex (OFC), cingulate cortex (Cg1), NAc shell, medial habenula (mHb), dorsal hippocampal CA1 (dCA1) and ventral hippocampal CA1 (vCA1) were only blunted in female F1 mice. Taken together, the distinct brain stimulation patterns between male and female F1 mice might contribute to the sex-specific behavioural outcomes by paternal METH exposure, which indicate that sex differences should be considered in the treatment of offspring paternally exposed drugs.
Asunto(s)
Metanfetamina , Animales , Encéfalo , Femenino , Hipocampo , Masculino , Metanfetamina/farmacología , Ratones , Núcleo Accumbens , Corteza PrefrontalRESUMEN
Methamphetamine (METH) is a common abused drug. METH-triggered glutamate (Glu) levels in dorsal CA1 (dCA1) could partially explain the etiology of METH-caused abnormal memory, but the synaptic mechanism remains unclear. Here, we found that METH withdrawal disrupted spatial memory in mice, accompanied by the increases in Glu levels and postsynaptic neuronal activities at dCA1 synapses. METH withdrawal weakened the capacity of Glu clearance in astrocytes, as indicated by increasing the A1-like astrocytes and phosphorylated signal transducer and activator of transcription 3 (p-STAT3), decreasing the Glu transporter 1(GLT-1, also known as EAAT2 or SLC1A2), Glu-aspartate-transporter (GLAST also known as EAAT1 or SLC1A3) and astrocytic glutamine synthase (GS), but failed to affect the presynaptic Glu release from dCA3 within dCA1. Moreover, we identified that in vitro A1-like astrocytes exhibited an increased STAT3 activation and the impaired capacity of Glu clearance. Most importantly, selective knockdown of astrocytic STAT3 in vivo in dCA1 restored the astrocytic capacity of Glu clearance, normalized Glu levels at dCA1 synapses, and finally rescued METH withdrawal-disrupted spatial memory in mice. Thus, astrocytic Glu clearance system, especially STAT3, serves as a novel target for future therapies against METH neurotoxicity.
Asunto(s)
Astrocitos , Metanfetamina , Animales , Astrocitos/fisiología , Transportador 2 de Aminoácidos Excitadores/genética , Ácido Glutámico , Metanfetamina/toxicidad , Ratones , Factor de Transcripción STAT3/genética , Memoria EspacialRESUMEN
RATIONALE: Methamphetamine (METH) exposure has toxicity in sperm epigenetic phenotype and increases the risk for developing addiction in their offspring. However, the underlying transgenerational mechanism remains unclear. OBJECTIVES: The current study aims to investigate the profiles of sperm epigenetic modifications in male METH-exposed mice (F0) and medial prefrontal cortex (mPFC) transcriptome in their male first-generation offspring (F1). METHODS: METH-related male F0 and F1 mice model was established to investigate the effects of paternal METH exposure on reproductive functions and sperm DNA methylation in F0 and mPFC transcriptomic profile in F1. During adulthood, F1 was subjected to a conditioned place preference (CPP) test to evaluate sensitivity to METH. The gene levels were verified with qPCR. RESULTS: METH exposure obviously altered F0 sperms DNA methylated profile and male F1 mPFC transcriptomic profile, many of which being related to neuronal system and brain development. In METH-sired male F1, subthreshold dose of METH administration effectively elicited CPP, along with more mPFC activation. After qPCR verification, Sort1 and Shank2 were at higher levels in F0 sperm and F1 mPFC. CONCLUSIONS: Our findings put new insights into paternal METH exposure-altered profiles of F0 sperm DNA methylation and male F1 mPFC transcriptomics. Several genes, such as Sort1 and Shank2, might be used as potential molecules for further research on the transgenerational vulnerability to drug addiction in offspring by paternal drug exposure.
RESUMEN
BACKGROUND: Gegen Qinlian Decoction (GQD) is a classical traditional Chinese medicine (TCM) formula primarily utilized for treating gut disorders. GQD showed therapeutic effects on several diseases in clinical and animal studies by targeting gut microbes. Our recent studies also found that GQD efficiently alleviated anxiety in methamphetamine-withdrawn mice via regulating gut microbiome and metabolism. Given that various studies have indicated the link between the gut microbiome and the development of depression, here we endeavor to explore whether GQD can manage depression disorders by targeting the gut microbiome. METHODS AND MATERIALS: The depression-like model was induced in rats through chronic unpredictable mild stress (CUMS) and the depression levels were determined using the sucrose preference test (SPT). To address the depression-like behavior in rats, oral administration of GQD was employed. The colon microbiome and metabolite patterns were determined by 16s rRNA sequencing and untargeted metabolomics, respectively. RESULTS: We found 6 weeks of CUMS can induce depression-like behavior in rats and 4 weeks of GQD treatment can significantly alleviate the depression-like behavior. GQD treatment can also ameliorate the histological lesions in the colon of CUMS rats. Then, CUMS increased the abundance of gut microbes, while GQD treatment can restore it to a lower level. We further discovered that the abundances of 19 bacteria at the genus level were changed with CUMS treatment, among which the abundances of Ruminococcus, Lachnoclostridium, Pygmaiobacter, Bacteroides, Pseudomonas, and Pseudomonas Family_XIII_AD3011_group were stored by GQD treatment. Besides, we identified the levels of 36 colon metabolites were changed with CUMS treatment, among which the levels of Fasciculic acid B, Spermine, Fludrocortisone acetate, alpha-Ketoglutaric acid, 2-Oxoglutaric acid, N'-(benzoyloxy)-2-(2,2-dichlorocyclopropyl) ethanimidamide, N6-Succinyl Adenosine Oleanolic acid, KQH, Ergosta-5,7,9(11),22-Tetraen-3-beta-Ol, Gentisic acid, 4-Hydroxyretinoic Acid, FAHFA (3:0/16:0), Leucine-enkephalin and N-lactoyl-phenylalanine can be restored by GQD treatment. CONCLUSION: Our findings provide evidence supporting the therapeutic efficacy of GQD in alleviating depression-like behavior in CUMS rats, potentially being targeted on colon bacteria (especially the abundance of Ruminococcus and Bacteroides) and metabolites (especially the level of Oleanolic acid).
Asunto(s)
Depresión , Modelos Animales de Enfermedad , Medicamentos Herbarios Chinos , Microbioma Gastrointestinal , Ratas Sprague-Dawley , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Ratas , Medicamentos Herbarios Chinos/farmacología , Masculino , Depresión/tratamiento farmacológico , Estrés Psicológico/tratamiento farmacológico , Conducta Animal/efectos de los fármacosRESUMEN
Paternal abuse of drugs, such as methamphetamine (METH), elevates the risk of developing addiction in subsequent generations, however, its underlying molecular mechanism remains poorly understood. Male adult mice (F0) were exposed to METH for 30 days, followed by mating with naïve female mice to create the first-generation mice (F1). When growing to adulthood, F1 were subjected to conditioned place preference (CPP) test. Subthreshold dose of METH (sd-METH), insufficient to induce CPP normally, were used in F1. Selective antagonist (betaxolol) for ß1-adrenergic receptor (ADRB1) or its knocking-down virus were administrated into mPFC to regulate ADRB1 function and expression on CaMKII-positive neurons. METH-sired male F1 acquired sd-METH-induced CPP, indicating that paternal METH exposure induce higher sensitivity to METH in male F1. Compared with saline (SAL)-sired male F1, CaMKII-positive neuronal activity was normal without sd-METH, but strongly evoked after sd-METH treatment in METH-sired male F1 during adulthood. METH-sired male F1 had higher ADRB1 levels without sd-METH, which was kept at higher levels after sd-METH treatment in mPFC. Either inhibiting ADRB1 function with betaxolol, or knocking-down ADRB1 level on CaMKII-positive neurons (ADRB1CaMKII) with virus transfection efficiently suppressed sd-METH -evoked mPFC activation, and ultimately blocked sd-METH-induced CPP in METH-sired male F1. In the process, the p-ERK1/2 and ΔFosB may be potential subsequent signals of mPFC ADRB1CaMKII. The mPFC ADRB1CaMKII mediates paternal METH exposure-induced higher sensitivity to drug addiction in male offspring, raising a promising pharmacological target for predicting or treating transgenerational addiction.