Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Pest Manag Sci ; 80(8): 3873-3883, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38511764

RESUMEN

BACKGROUND: Pine wood nematode (PWN; Bursaphelenchus xylophilus) is the causative agent of pine wilt disease (PWD), which is considered the most dangerous biohazard to conifer trees globally. The transmission of PWN relies on insect vectors, particularly the Japanese pine sawyer (JPS; Monochamus alternatus). However, the molecular mechanism underlying PWN-JPS assembly remains largely unknown. RESULTS: Here, we found that both geographical and gender could significantly affect the PCA (PWN carrying amount) of JPS; thus, JPS transcriptomes from diverse locations and genders were explored regard to PWN loading. Due to the shortage of genomes, we developed a full-length reference transcriptome for analyzing next-generation sequencing data. A comparative genomic study was performed, and 11 248 potential PWN-carrying associate genes (ß) were nominated in JPS by using the reported genomes of PWN and non-PWN carrier insect species. Then, 151 differentially expressed transcripts (DETs), 28 of them overlapped with ß, correlated with the PCA of JPS were nominated by RNA-Seq, and found that fatty acid ß-oxidation might be the key factor that affected the PCA of JPS. Furthermore, JPS fatty acid ß-oxidation rates were experimentally decreased using the inhibitor Etomoxir, leading to an increased PCA of JPS. Meanwhile, silencing MaCPT1 in JPS by RNA interference led to a decreased fatty acid ß-oxidation rate and increased PCA of JPS. CONCLUSIONS: In conclusion, MaCPT1 was able to decrease the PWN-JPS assembly formation through the fatty acid ß-oxidation of JPS. These results provide new insights for exploring the impact of PWN invasion on JPS. © 2024 Society of Chemical Industry.


Asunto(s)
Genómica , Transcriptoma , Tylenchida , Animales , Femenino , Masculino , Pinus/parasitología , Enfermedades de las Plantas/parasitología , Tylenchida/genética , Tylenchida/fisiología
2.
Zookeys ; 1154: 149-157, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37234193

RESUMEN

In this paper, the subgenus Thailandia Bílý, 1990 of the genus Anthaxia Eschscholtz, 1829 from China is reported, including two species: A. (T.) svatoplukbilyi Qi & Song, sp. nov. from Guangxi and A. (T.) rondoni Baudon, 1962 from Yunnan. The description and illustrations of the new species are provided, the illustrations and information of A. (T.) rondoni from Yunnan are given for the first time, and the diagnostic characters are provided to distinguish the new species from other related species.

3.
Plants (Basel) ; 12(2)2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36679058

RESUMEN

Plant viruses and entomopathogenic fungi (EPF) can both elicit immune responses in insects. This study was designed to clarify whether plant viruses could affect the efficacy of EPF and explore the immune responses of brown planthopper (BPH), Nilaparvata lugens, in response to different pathogen infections. In this study, a strain of Metarhizium anisopliae YTTR with high pathogenicity against BPH was selected and explored whether rice ragged stunt virus (RRSV) could affect its lethality against BPH. RNA-seq was used to detect the inner responses of BPH in response to RRSV and M. anisopliae YTTR infection. Results showed that M. anisopliae YTTR has strong lethality against BPH (RRSV-carrying and RRSV-free). RRSV invasion did not affect the susceptibility of BPH against M. anisopliae YTTR at all concentrations. At 1 × 108 spores/mL, M. anisopliae YTTR caused a cumulative mortality of 80% to BPH at 7 days post-treatment. The largest numbers of differentially expressed genes (DEGs) was obtained in BPH treated with the two pathogens than in other single pathogen treatment. In addition, KEGG enrichment analysis showed that the DEGs were mostly enriched in immune and physiological mechanisms-related pathways. Both RRSV and M. anisopliae YTTR could induce the expression changes of immune-related genes. However, most of the immune genes had varying expression patterns in different treatment. Our findings demonstrated that RRSV invasion did not have any significant effect on the pathogenicity of M. anisopliae YTTR, while the co-infection of M. anisopliae YTTR and RRSV induced more immune and physiological mechanisms -related genes' responses. In addition, the presence of RRSV could render the interplay between BPH and M. anisopliae YTTR more intricate. These findings laid a basis for further elucidating the immune response mechanisms of RRSV-mediated BPH to M. anisopliae infection.

4.
Zootaxa ; 5318(2): 275-280, 2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37518385

RESUMEN

A new species Coomaniella sunfengyii Liao, Su, Qi & Song, sp. nov. from Fujian Province, China, is described and placed in the Coomaniella macropus species-group. The description, illustrations, host plant information and diagnostic characters of the new species are provided.


Asunto(s)
Escarabajos , Animales , Distribución Animal , Estructuras Animales , China , Macropodidae
5.
Front Vet Sci ; 10: 1077473, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37261112

RESUMEN

Introduction: Beauveria spp. and Dastarcus helophoroides Fairmaire adults were simultaneously released to attack elder larvae or pupae of Monochamus alternatus in pine forests in China. However, little is known about the pathogenicity virulence and biosafety of Beauveria spp. on beneficial adults of D. helophoroides, and specific Beauveria bassiana (Bb) strains should be selected for synthetic release together with D. helophoroides. Methods: A total of 17 strains of Beauveria spp. were collected, isolated, and purified, and then their mortality, cadaver rate, LT50, spore production, spore germination rate, and growth rate of D. helophoroide adults were calculated based on 0-20 days data after spore suspension and powder contact. Results and discussion: The lethality rate of BbMQ, BbFD, and BbMH-03 strains to D. helophoroides exceeded 50%, and the cadaver rate reached 70.6%, among which the mortality rate (82.22%), cadaver rate (47.78%), spore production (1.32 × 109 spores/ml), spore germination rate (94.71%), colony dimension (49.15 mm2), and LT50 (10.62 d) of the BbMQ strain were significantly higher than those of other strains (P < 0.01), and the mortality of D. helophoroides adults increased significantly with increased spore suspension concentration, with the highest mortality reaching 92.22%. This strain was identified as Beauveria bassiana by morphological and molecular methods, while the BbWYS strain had a minimum lethality of only 5.56%, which was safer compared to other strains of adult D. helophoroide. Consequently, the biological characteristics and pathogenicity of different Beauveria bassiana strains varied significantly in their effects on D. helophoroide adults, and the safety of different strains should be assessed when they are released or sprayed to control multiple pests in the forest. The BbMQ strain should not be simultaneously sprayed with releasing D. helophoroide adults in the same forest, while the BbWYS strain can be used in concert with D. helophoroide to synergize their effect.

6.
Front Microbiol ; 14: 1164511, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37256050

RESUMEN

Introduction: Tea is one of the most widely consumed beverages around the world. Larvae of the moth, Ectropis obliqua Prout (Geometridae, Lepidoptera), are one of the most destructive insect pests of tea in China. E. obliqua is a polyphagus insect that is of increasing concern due to the development of populations resistant to certain chemical insecticides. Microbial biological control agents offer an environmentally friendly and effective means for insect control that can be compatible with "green" and organic farming practices. Methods: To identify novel E. obliqua biological control agents, soil and inset cadaver samples were collected from tea growing regions in the Fujian province, China. Isolates were analyzed morphologically and via molecular characterization to identity them at the species level. Laboratory and greenhouse insect bioassays were used to determine the effectiveness of the isolates for E. obliqua control. Results: Eleven isolates corresponding to ten different species of Metarhizium were identified according to morphological and molecular analyses from soil and/or insect cadavers found on tea plants and/or in the surrounding soil sampled from eight different regions within the Fujian province, China. Four species of Metarhizium including M. clavatum, M. indigoticum, M. pemphigi, and M. phasmatodeae were documented for the first time in China, and the other species were identified as M. anisopliae, M. brunneum, M. lepidiotae, M. majus, M. pinghaense, and M. robertsii. Insect bioassays of the eleven isolates of Metarhizium revealed significant variation in the efficacy of each isolate to infect and kill E. obliqua. Metarhizium pingshaense (MaFZ-13) showed the highest virulence reaching a host target mortality rate of 93% in laboratory bioassays. The median lethal concentration (LC50) and median lethal time (LT50) values of M. pingshaense MaFZ-13 were 9.6 × 104 conidia/mL and 4.8 days, respectively. Greenhouse experiments and a time-dose-mortality (TDM) models were used to further evaluate and confirm the fungal pathogenic potential of M. pingshaense MaFZ-13 against E. obliqua larvae. Discussion: Isolation of indigenous microbial biological control agents targeting specific pests is an effective approach for collecting resources that can be exploited for pest control with lowered obstacles to approval and commercialization. Our data show the presence of four different previously unreported Metarhizium species in China. Bioassays of the eleven different Metarhizium strains isolated revealed that each could infect and kill E. obliqua to different degrees with the newly isolated M. pingshaense MaFZ-13 strain representing a particularly highly virulent isolate potentially applicable for the control of E. obliqua larvae.

7.
Front Plant Sci ; 14: 1257744, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38023855

RESUMEN

Introduction: Pine wilt disease (PWD) is responsible for extensive economic and ecological damage to Pinus spp. forests and plantations worldwide. PWD is caused by the pine wood nematode (PWN, Bursaphelenchus xylophilus) and transmitted into pine trees by a vector insect, the Japanese pine sawyer (JPS, Monochamus alternatus). Host infection by PWN will attract JPS to spawn, which leads to the co-existence of PWN and JPS within the host tree, an essential precondition for PWD outbreaks. Through the action of their metabolites, microbes can manipulate the co-existence of PWN and JPS, but our understanding on how key microorganisms engage in this process remains limited, which severely hinders the exploration and utilization of promising microbial resources in the prevention and control of PWD. Methods: In this study we investigated how the PWN-associated fungus Aspergillus promotes the co-existence of PWN and JPS in the host trees (Pinus massoniana) via its secondary metabolite, sterigmatocystin (ST), by taking a multi-omics approach (phenomics, transcriptomics, microbiome, and metabolomics). Results: We found that Aspergillus was able to promote PWN invasion and pathogenicity by increasing ST biosynthesis in the host plant, mainly by suppressing the accumulation of ROS (reactive oxygen species) in plant tissues that could counter PWN. Further, ST accumulation triggered the biosynthesis of VOC (volatile organic compounds) that attracts JPS and drives the coexistence of PWN and JPS in the host plant, thereby encouraging the local transmission of PWD. Meanwhile, we show that application of an Aspergillus inhibitor (chiricanine A treatment) results in the absence of Aspergillus and decreases the in vivo ST amount, thereby sharply restricting the PWN development in host. This further proved that Aspergillus is vital and sufficient for promoting PWD transmission. Discussion: Altogether, these results document, for the first time, how the function of Aspergillus and its metabolite ST is involved in the entire PWD transmission chain, in addition to providing a novel and long-term effective nematicide for better PWD control in the field.

8.
PLoS One ; 18(12): e0295945, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38127873

RESUMEN

Pine wilt disease (PWD) is caused by the pine wood nematode (PWN, Bursaphelenchus xylophilus) and transmitted by a vector insect, the Monochamus alternatus. The PWN has caused much extensive damage to pine-dominated forest ecosystems. Trunk injection of emamectin benzoate (EB) has been found to be the most useful protective measure against the PWN, due to its low effective dose and long residence time in the field. However, the interactions between EB and the host or the environment remain largely unknown, which limits the efficacy and stability of EB in practical field settings. In this study, we investigated the impact on PWN from EB injection for both adult and young host plants (Pinus massoniana) by taking a multi-omics (phenomics, transcriptomics, microbiome, and metabolomics) approach. We found that EB injection can significantly reduce the amount of PWN in both living adult and young pine trees. Additionally, EB was able to activate the genetic response of P. massoniana against PWN, promotes P. massoniana growth and development and resistance to Pine wilt disease, which requires the presence of PWN. Further, the presence of EB greatly increased the accumulation of reactive oxygen species (ROS) in the host plant in a PWN-dependent manner, possibly by affecting ROS-related microbes and metabolites. Moreover, we uncovered the function of EB limiting the consumption of P. massoniana by the JPS. Based on biochemical and gut microbial data, we found that EB can significantly reduces cellulase activity in JPS, whose transcription factors, sugar metabolism, and the phosphotransferase system are also affected. These results document the impact of EB on the entire PWD transmission chain through multi-omics regarding the dominant pine (P. massoniana) in China and provide a novel perspective for controlling PWD outbreaks in the field.


Asunto(s)
Escarabajos , Pinus , Animales , Especies Reactivas de Oxígeno , Pinus/genética , Ecosistema , Perfilación de la Expresión Génica , Escarabajos/genética , Antinematodos/farmacología , Enfermedades de las Plantas/genética
9.
Front Plant Sci ; 12: 798539, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35046983

RESUMEN

Pinewood nematode (PWN), the causal agent of pine wilt disease (PWD), causes massive global losses of Pinus species each year. Bacteria and fungi existing in symbiosis with PWN are closely linked with the pathogenesis of PWD, but the relationship between PWN pathogenicity and the associated microbiota is still ambiguous. This study explored the relationship between microbes and the pathogenicity of PWN by establishing a PWN-associated microbe library, and used this library to generate five artificial PWN-microbe symbiont (APMS) assemblies with gnotobiotic PWNs. The fungal and bacterial communities of different APMSs (the microbiome) were explored by next-generation sequencing. Furthermore, different APMSs were used to inoculate the same Masson pine (Pinus massoniana) cultivar, and multi-omics (metabolome, phenomics, and transcriptome) data were obtained to represent the pathogenicity of different APMSs at 14 days post-inoculation (dpi). Significant positive correlations were observed between microbiome and transcriptome or metabolome data, but microbiome data were negatively correlated with the reactive oxygen species (ROS) level in the host. Five response genes, four fungal genera, four bacterial genera, and nineteen induced metabolites were positively correlated with the ROS level, while seven induced metabolites were negatively correlated. To further explore the function of PWN-associated microbes, single genera of functional microbes (Mb1-Mb8) were reloaded onto gnotobiotic PWNs and used to inoculate pine tree seedlings. Three of the genera (Cladophialophora, Ochroconis, and Flavobacterium) decreased the ROS level of the host pine trees, while only one genus (Penicillium) significantly increased the ROS level of the host pine tree seedlings. These results demonstrate a clear relationship between associated microbes and the pathogenicity of PWN, and expand the knowledge on the interaction between PWD-induced forest decline and the PWN-associated microbiome.

10.
Front Microbiol ; 12: 705853, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34367107

RESUMEN

Prodigiosin is a promising secondary metabolite produced mainly by Serratia strains. To study the global regulatory mechanism of prodigiosin biosynthesis, a mutagenesis library containing 23,000 mutant clones was constructed with the EZ-Tn5 transposon, and 114 clones in the library showed altered prodigiosin production ability. For 37 of the 114 clones, transposon insertion occurred on the prodigiosin biosynthetic cluster genes; transposon inserted genes of the 77 clones belonged to 33 different outside prodigiosin biosynthetic cluster genes. These 33 genes can be divided into transcription-regulating genes, membrane protein-encoding genes, and metabolism enzyme-encoding genes. Most of the genes were newly reported to be involved in prodigiosin production. Transcriptional levels of the pigA gene were significantly downregulated in 22 mutants with different inserted genes, which was in accordance with the phenotype of decreased prodigiosin production. Functional confirmation of the mutant genes involved in the pyrimidine nucleotide biosynthesis pathway was carried out by adding orotate and uridylate (UMP) into the medium. Gene complementation confirmed the regulatory function of the EnvZ/OmpR two-component regulatory system genes envZ and ompR in prodigiosin production.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA