RESUMEN
BACKGROUND: A recent breakthrough therapy combining the BCL-2 inhibitor venetoclax with hypomethylating agents (HMAs) targeting DNA methyltransferase has improved outcomes for patients with acute myeloid leukemia (AML), but the responses and long-term survival in older/unfit patients and in patients with relapsed/refractory AML remain suboptimal. Recent studies showed that inhibition of BCL-2 or DNA methyltransferase modulates AML T-cell immunity. METHODS: By using flow cytometry and time-of-flight mass cytometry, the authors examined the effects of the HMA decitabine combined with the BCL-2 inhibitor venetoclax (DAC/VEN therapy) on leukemia cells and T cells in patients with AML who received DAC/VEN therapy in a clinical trial. The authors investigated the response of programmed cell death protein 1 (PD-1) inhibition in the DAC/VEN-treated samples in vitro and investigated the triple combination of PD-1 inhibition with HMA/venetoclax in the trial patients who had AML. RESULTS: DAC/VEN therapy effectively targeted leukemia cells and upregulated the expression of the immune checkpoint-inhibitory receptor PD-1 in T cells while preserving CD4-positive and CD8-positive memory T cells in a subset of patients with AML who were tested. In vitro PD-1 inhibition potentiated the antileukemia response in DAC/VEN-treated AML samples. The combined use of azacitidine, venetoclax, and nivolumab eliminated circulating blasts and leukemia stem cells/progenitor cells and expanded the percentage of CD8-positive memory T cells in an illustrative patient with relapsed AML who responded to the regimen in an ongoing clinical trial. CONCLUSIONS: Immunomodulation by targeting PD-1 enhances the therapeutic effect of combining an HMA and venetoclax in patients with AML.
Asunto(s)
Antineoplásicos , Leucemia Mieloide Aguda , Humanos , Anciano , Metiltransferasas , Receptor de Muerte Celular Programada 1/uso terapéutico , Antineoplásicos/uso terapéutico , Metilasas de Modificación del ADN , Proteínas Proto-Oncogénicas c-bcl-2/genética , ADN/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversosRESUMEN
BACKGROUND: The high recurrence of a urethral stricture after direct vision internal urethrotomy (DVIU) has been a problem for years. Mitomycin C (MMC) is an excellent antifibrosis antigen that has been used in many fields, but its effect on a urethral stricture remains controversial. The purpose of this review was to investigate the effectiveness of MMC in reducing the recurrence rate of a urethral stricture after the first urethrotomy. METHODS: Common databases were searched for publications prior to November 30, 2020. Randomized controlled and cohort trials were all included. Recurrence and success rates after the first urethrotomy of the posterior urethra were the main outcomes. Revman 5.3 was used for statistical analysis. Two evaluation systems, the Cochrane risk of bias tool and the Newcastle Ottawa Scale, were used to examine the risk of bias for RCTs and all studies. The quality of evidence was assessed by the Grading of Recommendations, Assessment, Development, and Evaluation standard. RESULTS: Sixteen trials were included, the reporting quality of which was generally poor, and the evidence level was very low to moderate. The addition of MMC could significantly reduce the recurrence rate of urethral strictures (risk ratio [RR] = 0.42; 95% confidence interval [CI]: 0.26, 0.67; p = 0.0002; 9 trials; 550 participants). The results of the subgroup analysis suggested that the effect of MMC combined with DVIU was significant in short (≤2 cm) anterior urethral strictures (RR = 0.39; 95% CI: 0.20, 0.78; p = 0.008), >12-month follow-up (RR = 0.45; 95% CI: 0.26, 0.76; p = 0.003). It also increased the success rate of the first urethrotomy procedure for posterior urethral contracture (RR = 0.74; 95% CI: 0.65, 0.84; p < 0.00001; 7 trials; 342 participants). Low-dose local injection of MMC was the most commonly used method. CONCLUSION: MMC combined with DVIU is a promising way to reduce the long-term recurrence rate of a short-segment anterior urethral stricture. It also increases the success rate of the first urethrotomy of the posterior urethra. However, more high-quality randomized controlled trials are needed.
Asunto(s)
Estrechez Uretral , Humanos , Estrechez Uretral/tratamiento farmacológico , Estrechez Uretral/cirugía , Uretra/cirugía , Mitomicina/uso terapéutico , RecurrenciaRESUMEN
We investigated genetic and biologic characteristics of 2 Eurasian avian-like H1N1 swine influenza viruses from pigs in China that belong to the predominant G4 genotype. One swine isolate exhibited strikingly great homology to contemporaneous human Eurasian avian-like H1N1 isolates, preferential binding to the human-type receptor, and vigorous replication in mice without adaptation.
Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Gripe Humana , Infecciones por Orthomyxoviridae , Enfermedades de los Porcinos , Animales , Aves , China/epidemiología , Genotipo , Humanos , Subtipo H1N1 del Virus de la Influenza A/genética , Gripe Humana/epidemiología , Ratones , Infecciones por Orthomyxoviridae/veterinaria , Filogenia , Virus Reordenados/genética , Porcinos , Enfermedades de los Porcinos/epidemiologíaRESUMEN
In the projection moiré method, the projected fringe with a constant period usually generates a moiré pattern with nonuniform fringe spacing, which increases the low modulation regions and local measurement error. In this work, an adaptive moiré pattern generation method for the projection moiré system is developed. By formulating the relationship between the surface contour and moiré fringe spacing, the period of the projected fringe is modulated to acquire a uniform moiré pattern and highly improve the full-field measurement precision. The corresponding calculation algorithm is developed to obtain the 3D morphology. The proposed method is applicable to an arbitrarily arranged projection moiré system on any continuous surface without the phase jump error. A series of experiments are carried out, and the results are discussed in detail.
RESUMEN
In this study, a double-modified bacterial cellulose/soybean protein isolate (DMBC/SPI), a new type of urethral tissue engineering scaffold with good biocompatibility, biodegradability, and cell-oriented growth, was prepared. Bacterial cellulose (BC) was physically and chemically modified by laser hole forming and selective oxidation to obtain the double-modified bacterial cellulose (DMBC). The soybean protein isolate (SPI) was compounded on DMBC to obtain DMBC/SPI with better biocompatibility. DMBC/SPI was used to repair the damaged urethra in rabbits. The results showed that DMBC/SPI was beneficial to heal the damaged urethra and did not cause a milder inflammatory response. The repaired urethra was smooth and continuous. DMBC/SPI has a good urethral repair effect and is expected to be used as a new urethral reconstruction material in clinical applications. In addition, FT-IR spectroscopy, SEM, static contact angle measurements, mechanical property investigation, and cell experiments were also performed to characterize the properties of DMBC/SPI composites.
Asunto(s)
Proteínas de Soja , Ingeniería de Tejidos , Uretra , Animales , Celulosa/química , Rayos Láser , Masculino , Conejos , Proteínas de Soja/química , Espectroscopía Infrarroja por Transformada de Fourier , Ingeniería de Tejidos/métodosRESUMEN
High-mobility group box 1 (HMGB1), a highly conserved chromosome protein, is considered as a potential therapeutic target and novel biomarker because of its regulation in the proliferation and metastasis of Hepatocellular carcinoma (HCC). Calenduloside E (CE), a natural active product, has been reported to anti-cancer effect. However, the role and underlying molecular mechanism of CE in HCC is still unclear. The purpose of this study is to investigate the effects of CE on the proliferation and migration of HCC, and then explore the possible underlying molecular mechanism. HepG2 cells were treated with CE or transfected with HMGB1 shRNA plasmids, EdU and colony formation assays were used to detect cell proliferation ability. Wound healing and transwell assays were used to determine the role of CE in cell migration. The expression of Cyclins, PCNA, MMPs, HMGB1, N-cadherin, E-cadherin and phosphorylation of p38, ERK and JNK were all detected using Western blotting. Our results showed that CE inhibited HepG2 cells proliferation and migration in a dose dependent manner; reduced the expression levels of Cycins, PCNA, HMGB1, MMPs and N-cadherin; up-regulated E-cadherin expression; enhanced the phosphorylation of p38 and JNK signalling pathways. Blocking the activation of p38 and JNK obviously reversed CE-mediated inhibitory effects on HepG2 cell proliferation and migration; reversed CE-induced down-regulation of Cyclins, PCNA, MMPs, N-cadherin and HMGB1, as well as E-cadherin up-regulation. In conclusion, our study suggested that CE reduces the expression levels of Cyclins, MMPs and epithelial-mesenchymal transformation (EMT) through p38/JNK-HMGB1 signaling axis and then inhibits HepG2 cells proliferation and migration in HepG2 cells. This study provides a new perspective for the anti-tumour molecular mechanism of CE in HCC.
Asunto(s)
Carcinoma Hepatocelular/patología , Movimiento Celular/efectos de los fármacos , Movimiento Celular/genética , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/genética , Proteína HMGB1/metabolismo , Neoplasias Hepáticas/patología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/genética , Ácido Oleanólico/análogos & derivados , Saponinas/farmacología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Carcinoma Hepatocelular/tratamiento farmacológico , Células Hep G2 , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Ácido Oleanólico/farmacología , FitoterapiaRESUMEN
Calcium-dependent protein kinase (CDPK or CPK) and CDPK-related kinase (CRK) play an important role in plant growth, development, and adaptation to environmental stresses. However, their gene families had been yet inadequately investigated in Medicago truncatula. In this study, six MtCRK genes were computationally identified, they were classified into five groups with MtCDPKs based on phylogenetic relationships. Six pairs of segmental duplications were observed in MtCDPK and MtCRK genes and the Ka/Ks ratio, an indicator of selection pressure, was below 0.310, indicating that these gene pairs underwent strong purifying selection. Cis-acting elements of morphogenesis, multiple hormone responses, and abiotic stresses were predicted in the promoter region. The spatial expression of MtCDPKs and MtCRKs displays diversity. The expression of MtCDPKs and MtCRKs could be regulated by various stresses. MtCDPK4, 14, 16, 22, and MtCRK6 harbor both N-myristoylation site and palmitoylation site and were anchored on plasma membrane, while MtCDPK7, 9, and 15 contain no or only one N-acylation site and were distributed in cytosol and nucleus, suggesting that the N-terminal acylation sites play a key role in subcellular localization of MtCDPKs and MtCRKs. In summary, comprehensive characterization of MtCDPKs and MtCRKs provide a subset of candidate genes for further functional analysis and genetic improvement against drought, cold, salt and biotic stress.
Asunto(s)
Genoma de Planta , Estudio de Asociación del Genoma Completo , Medicago truncatula/genética , Familia de Multigenes , Proteínas Quinasas/genética , Proteínas Proto-Oncogénicas c-crk/genética , Mapeo Cromosómico , Secuencia Conservada , Evolución Molecular , Regulación de la Expresión Génica de las Plantas , Medicago truncatula/clasificación , Filogenia , Regiones Promotoras GenéticasRESUMEN
The traditional antimalarial herb Artemisia annua L., from which artemisinin is isolated, is widely used in endemic regions. It has been suggested that artemisinin activity can be enhanced by flavonoids in A. annua; however, how fast and how long the flavonoids are present in the body remains unknown. In the present study, a rapid and sensitive liquid chromatography with tandem mass spectrometry method was developed and validated for the simultaneous determination of three major flavonoids components, i.e. chrysosplenol D, chrysoplenetin, and artemetin and their glucuronidated metabolites in rats after oral administrations of A. annua extracts at a therapeutic ultra-low dose. The concentration of the intact form was determined directly, and the concentration of the glucuronidated form was assayed in the form of flavonoids aglycones, after treatment with ß-glucuronidase/sulfatase. The method was linear in the range of 0.5-300.0 ng/mL for chrysoplenetin and artemetin, and 2-600 ng/mL for chrysosplenol D. All the validation data conformed to the acceptance requirements. The study revealed a significantly higher exposure of the flavonoid constituents in conjugated forms in rats, with only trace intact from. Multiple oral doses of A. annua extracts led to a decreased plasma concentration levels for three flavonoids.
Asunto(s)
Antimaláricos/sangre , Artemisia annua/química , Flavonoides/sangre , Glucurónidos/sangre , Extractos Vegetales/sangre , Administración Oral , Animales , Antimaláricos/administración & dosificación , Antimaláricos/farmacocinética , Cromatografía Líquida de Alta Presión , Flavonoides/administración & dosificación , Flavonoides/farmacocinética , Glucurónidos/administración & dosificación , Glucurónidos/farmacocinética , Masculino , Extractos Vegetales/administración & dosificación , Extractos Vegetales/farmacocinética , Ratas , Ratas Wistar , Espectrometría de Masas en TándemRESUMEN
As a partner antimalarial for artemisinin drug-based combination therapy (ACT), piperaquine (PQ) can be metabolized into two major metabolites, including piperaquine N-oxide (M1) and piperaquine N,N-dioxide (M2). To better understand the antimalarial potency of PQ, the antimalarial activity of the PQ metabolites (M1 and M2) was studied in vitro (in Plasmodium falciparum strains Pf3D7 and PfDd2) and in vivo (in the murine species Plasmodium yoelii) in this study. The recrudescence and survival time of infected mice were also recorded after drug treatment. The pharmacokinetic profiles of PQ and its two metabolites (M1 and M2) were investigated in healthy subjects after oral doses of two widely used ACT regimens, i.e., dihydroartemisinin plus piperaquine phosphate (Duo-Cotecxin) and artemisinin plus piperaquine (Artequick). Remarkable antiplasmodial activity was found for PQ (50% growth-inhibitory concentration [IC50], 4.5 nM against Pf3D7 and 6.9 nM against PfDd2; 90% effective dose [ED90], 1.3 mg/kg of body weight), M1 (IC50, 25.5 nM against Pf3D7 and 38.7 nM against PfDd2; ED90, 1.3 mg/kg), and M2 (IC50, 31.2 nM against Pf3D7 and 33.8 nM against PfDd2; ED90, 2.9 mg/kg). Compared with PQ, M1 showed comparable efficacy in terms of recrudescence and survival time and M2 had relatively weaker antimalarial potency. PQ and its two metabolites displayed a long elimination half-life (â¼11 days for PQ, â¼9 days for M1, and â¼4 days for M2), and they accumulated after repeated administrations. The contribution of the two PQ metabolites to the efficacy of piperaquine as a partner drug of ACT for the treatment of malaria should be considered for PQ dose optimization.
Asunto(s)
Antimaláricos/farmacocinética , Malaria/tratamiento farmacológico , Plasmodium falciparum/efectos de los fármacos , Plasmodium yoelii/efectos de los fármacos , Quinolinas/farmacocinética , Animales , Antimaláricos/sangre , Antimaláricos/farmacología , Artemisininas/farmacología , Biotransformación , Esquema de Medicación , Cálculo de Dosificación de Drogas , Quimioterapia Combinada , Semivida , Voluntarios Sanos , Humanos , Malaria/metabolismo , Malaria/mortalidad , Malaria/parasitología , Masculino , Ratones , Ratones Endogámicos ICR , Óxidos/sangre , Plasmodium falciparum/crecimiento & desarrollo , Plasmodium falciparum/patogenicidad , Plasmodium yoelii/crecimiento & desarrollo , Plasmodium yoelii/patogenicidad , Quinolinas/sangre , Quinolinas/farmacología , Ratas Wistar , Recurrencia , Análisis de Supervivencia , Adulto JovenRESUMEN
ETHNOPHARMACOLOGICAL RELEVANCE: Artemisinin (ART) showed enhanced antimalarial potency in the herb Artemisia annua L. (A. annua), from which ART is isolated. Increased absorption of ART with inhibited metabolism in the plant matrix is an underlying mechanism. Several synergistic components have been reported based on a "bottom-up" approach, i.e., traditional isolation followed by pharmacokinetic and/or pharmacodynamic evaluation. AIM OF THE STUDY: In this study, we employed a "top-down" approach based on in vivo antimalarial and pharmacokinetic studies to identify synergistic components in A. annua. MATERIALS AND METHODS: Two A. annua extracts in different chemical composition were obtained by extraction using ethyl acetate (EA) and petroleum ether (PE). The synergistic antimalarial activity of ART in two extracts was compared both in vitro (Plasmodium falciparum) and in vivo (murine Plasmodium yoelii). For the PD-PK correlation analysis, the pharmacokinetic profiles of ART and its major metabolite (ART-M) were investigated in healthy rats after a single oral administration of pure ART (20 mg/kg) or equivalent ART in each A. annua extract. A liquid chromatography-tandem high-resolution mass spectrometry (LC-HRMS)-based analytical strategy was then applied for efficient component classification and structural characterization of the differential components in the targeted extract with a higher antimalarial potency. Major components isolated from the targeted extract were then evaluated for their synergistic effect in the same proportion. RESULTS: Compared with pure ART (ED50, 5.6 mg/kg), ART showed enhanced antimalarial potency in two extracts in vivo (ED50 of EA, 2.9 mg/kg; ED50 of PE, 1.6 mg/kg), but not in vitro (IC50, 15.0-20.0 nM). A significant increase (1.7-fold) in ART absorption (AUC0-t) was found in rats after a single oral dose of equivalent ART in PE but not in EA; however, no significant change in the metabolic capability (AUCART-M/AUCART) was found for ART in either extract. The differential component analysis of the two extracts showed a higher composition of sesquiterpene compounds, especially component AB (3.0% in PE vs. 0.9% in EA) and component AA (14.1% in PE vs. 5.1% in EA). Two target sesquiterpenes were isolated and identified as arteannuin B (AB) and artemisinic acid (AA). The synergism between ART and AB/AA in the same proportion with PE extract (20:1.6:7.6, mg/kg) was verified by a pharmacokinetic study in rats. CONCLUSIONS: A "top-down" strategy based on PD-PK studies was successfully employed to identify synergistic components for ART in A. annua. Two sesquiterpene compounds (arteannuin B and artemisinic acid) could enhance the antimalarial potency of ART by increasing its absorption.
Asunto(s)
Antimaláricos , Artemisia annua , Artemisininas , Sesquiterpenos , Ratas , Ratones , Animales , Antimaláricos/química , Artemisia annua/química , Artemisininas/farmacocinética , Extractos Vegetales/farmacología , Extractos Vegetales/químicaRESUMEN
OBJECTIVE: The use of minimally invasive endoluminal treatment for urethral strictures has been a subject for debate for several decades. The aim of this study was to review and discuss the safety, efficacy and factors influencing the clinical application of balloon dilation for the treatment of male urethral strictures. DESIGN: Systematic review and meta-analysis. DATA SOURCES: Embase, Medline, Web of Science, Cochrane Library and Scopus were searched for publications published before 17 July 2022. STUDY SELECTION: Two independent researchers screened and assessed the results, and all clinical studies on balloon dilation for the treatment of urethral strictures in men were included. DATA EXTRACTION AND SYNTHESIS: The success rate, rate of adverse events, International Prostate Symptom Scores, maximum uroflow (Qmax) and postvoid residual urine volume were the main outcomes. Stata V.14.0 was used for statistical analysis. RESULTS: Fifteen studies with 715 patients were ultimately included in this systematic review. The pooled results of eight studies showed that the reported success rate of simple balloon dilation for male urethral strictures was 67.07% (95% confidence interval [CI]: 55.92% to 77.36%). The maximum urinary flow rate at 3 months (risk ratio [RR]= 2.6510, 95% CI: 1.0681 to 4.2338, p<0.01) and the maximum urinary flow rate at 1 year (RR= 1.6637, 95% CI: 1.1837 to 2.1437, p<0.05) were significantly different after dilation. There is insufficient evidence to suggest that balloon dilation is superior to optical internal urethrotomy or direct visual internal urethrotomy (DVIU) (RR= 1.4754, 95% CI: 0.7306 to 2.9793, p=0.278). CONCLUSION: Balloon dilation may be an intermediate step before urethroplasty and is a promising alternative therapy to simple dilation and DVIU. The balloon is a promising drug delivery tool, and paclitaxel drug-coated balloon dilation is effective in reducing retreatment rates in patients with recurrent anterior urethral strictures. The aetiology, location, length, previous treatment of urethral stricture may be associated with the efficacy of balloon dilation. PROSPERO REGISTRATION NUMBER: CRD42022334403.
Asunto(s)
Dilatación , Estrechez Uretral , Humanos , Estrechez Uretral/terapia , Estrechez Uretral/cirugía , Masculino , Dilatación/métodos , Resultado del TratamientoRESUMEN
BACKGROUND: Alzheimer's disease (AD) is a prevalent neurodegenerative disease with no effective treatment. Efficient and rapid detection plays a crucial role in mitigating and managing AD progression. Deep learning-assisted smartphone-based microfluidic paper analysis devices (µPADs) offer the advantages of low cost, good sensitivity, and rapid detection, providing a strategic pathway to address large-scale disease screening in resource-limited areas. However, existing smartphone-based detection platforms usually rely on large devices or cloud servers for data transfer and processing. Additionally, the implementation of automated colorimetric enzyme-linked immunoassay (c-ELISA) on µPADs can further facilitate the realization of smartphone µPADs platforms for efficient disease detection. RESULTS: This paper introduces a new deep learning-assisted offline smartphone platform for early AD screening, offering rapid disease detection in low-resource areas. The proposed platform features a simple mechanical rotating structure controlled by a smartphone, enabling fully automated c-ELISA on µPADs. Our platform successfully applied sandwich c-ELISA for detecting the ß-amyloid peptide 1-42 (Aß 1-42, a crucial AD biomarker) and demonstrated its efficacy in 38 artificial plasma samples (healthy: 19, unhealthy: 19, N = 6). Moreover, we employed the YOLOv5 deep learning model and achieved an impressive 97 % accuracy on a dataset of 1824 images, which is 10.16 % higher than the traditional method of curve-fitting results. The trained YOLOv5 model was seamlessly integrated into the smartphone using the NCNN (Tencent's Neural Network Inference Framework), enabling deep learning-assisted offline detection. A user-friendly smartphone application was developed to control the entire process, realizing a streamlined "samples in, answers out" approach. SIGNIFICANCE: This deep learning-assisted, low-cost, user-friendly, highly stable, and rapid-response automated offline smartphone-based detection platform represents a good advancement in point-of-care testing (POCT). Moreover, our platform provides a feasible approach for efficient AD detection by examining the level of Aß 1-42, particularly in areas with low resources and limited communication infrastructure.
Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Biomarcadores , Ensayo de Inmunoadsorción Enzimática , Papel , Teléfono Inteligente , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/sangre , Humanos , Biomarcadores/sangre , Biomarcadores/análisis , Péptidos beta-Amiloides/análisis , Péptidos beta-Amiloides/sangre , Fragmentos de Péptidos/sangre , Fragmentos de Péptidos/análisis , Dispositivos Laboratorio en un Chip , Aprendizaje Profundo , Automatización , Técnicas Analíticas Microfluídicas/instrumentaciónRESUMEN
Mapping grazing intensity (GI) using satellites is crucial for developing adaptive utilization strategies according to grassland conditions. Here we developed a monitoring framework based on a paired sampling strategy and the classification probability of random forest algorithm to produce annual grazing probability (GP) and GI maps at 10-m spatial resolution from 2015 to 2021 for the largest temperate meadow in China (Hulun Buir grasslands), by harmonized Landsat 7/8 and Sentinel-2 images. The GP maps used values of 0-1 to present detailed grazing gradient information. To match widely used grazing gradients, annual GI maps with ungrazed, moderately grazed, and heavily grazed levels were generated from the GP dataset with a decision tree. The GI maps for 2015-2021 had an overall accuracy of more than 0.97 having significant correlations with the statistical data at city (r = 0.51) and county (r = 0.75) scales. They also effectively captured the GI gradients at site scale (r = 0.94). Our study proposed a monitoring approach and presented annual 10-m grazing information maps for sustainable grassland management.
RESUMEN
Urethral stricture caused by various reasons has threatened the quality of life of patients for decades. Traditional reconstruction methods, especially for long-segment injuries, have shown poor outcomes in treating urethral strictures. Tissue engineering for urethral regeneration is an emerging concept in which special designed scaffolds and seed cells are used to promote local urethral regeneration. The scaffolds, seed cells, various factors and the host interact with each other and form the regenerative microenvironment. Among the various interactions involved, vascularization and fibrosis are the most important biological processes during urethral regeneration. Mesenchymal stem cells and induced pluripotent stem cells play special roles in stricture repair and facilitate long-segment urethral regeneration, but they may also induce carcinogenesis and genomic instability during reconstruction. Nevertheless, current technologies, such as genetic engineering, molecular imaging, and exosome extraction, provide us with opportunities to manage seed cell-related regenerative risks. In this review, we described the interactions among seed cells, scaffolds, factors and the host within the regenerative microenvironment, which may help in determining the exact molecular mechanisms involved in urethral stricture regeneration and promoting clinical trials and the application of urethral tissue engineering in patients suffering from urethral stricture.
Asunto(s)
Células Madre Mesenquimatosas , Estrechez Uretral , Humanos , Estrechez Uretral/cirugía , Ingeniería de Tejidos/métodos , Calidad de Vida , Uretra/cirugíaRESUMEN
Malignancies are reliant on glutamine as an energy source and a facilitator of aberrant DNA methylation. We demonstrate preclinical synergy of telaglenastat (CB-839), a selective glutaminase inhibitor, combined with azacytidine (AZA), followed by a single-arm, open-label, phase 1b/2 study in persons with advanced myelodysplastic syndrome (MDS). The dual primary endpoints evaluated clinical activity, safety and tolerability; secondary endpoints evaluated pharmacokinetics, pharmacodynamics, overall survival, event-free survival and duration of response. The dose-escalation study included six participants and the dose-expansion study included 24 participants. Therapy was well tolerated and led to an objective response rate of 70% with (marrow) complete remission in 53% of participants and a median overall survival of 11.6 months, with evidence of myeloid differentiation in responders determined by single-cell RNA sequencing. Glutamine transporter solute carrier family 38 member 1 in MDS stem cells was associated with clinical responses and predictive of worse prognosis in a large MDS cohort. These data demonstrate the safety and efficacy of CB-839 and AZA as a combined metabolic and epigenetic approach in MDS. ClinicalTrials.gov identifier: NCT03047993 .
Asunto(s)
Azacitidina , Glutaminasa , Síndromes Mielodisplásicos , Humanos , Síndromes Mielodisplásicos/tratamiento farmacológico , Glutaminasa/antagonistas & inhibidores , Masculino , Femenino , Anciano , Persona de Mediana Edad , Azacitidina/uso terapéutico , Azacitidina/farmacología , Anciano de 80 o más Años , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Adulto , Tiadiazoles/uso terapéutico , Tiadiazoles/farmacología , Tiadiazoles/administración & dosificación , Inhibidores Enzimáticos/uso terapéutico , Inhibidores Enzimáticos/administración & dosificación , Inhibidores Enzimáticos/farmacología , BencenoacetamidasRESUMEN
ADSCs are a large number of mesenchymal stem cells in Adipose tissue, which can be applied to tissue engineering. ADSCs have the potential of multi-directional differentiation, and can differentiate into bone tissue, cardiac tissue, urothelial cells, skin tissue, etc. Compared with other mesenchymal stem cells, ADSCs have a multitude of promising advantages, such as abundant number, accessibility in cell culture, stable function, and less immune rejection. There are two main methods to use ADSCs for tissue repair and regeneration. One is to implant the "ADSCs-scaffold composite" into the injured site to promote tissue regeneration. The other is cell-free therapy: using ADSC-exos or ADSC-CM alone to release a large number of miRNAs, cytokines and other bioactive substances to promote tissue regeneration. The tissue regeneration potential of ADSCs is regulated by a variety of cytokines, signaling molecules, and external environment. The differentiation of ADSCs into different tissues is also induced by growth factors, ions, hormones, scaffold materials, physical stimulation, and other factors. The specific mechanisms are complex, and most of the signaling pathways need to be further explored. This article reviews and summarizes the mechanism and clinical application of ADSCs in tissue injury repair so far, and puts forward further problems that need to be solved in this field, hoping to provide directions for further research in this field.
RESUMEN
Microencapsulation of paraffin with lead tungstate shell (Pn@PWO) shows the drawbacks of low wettability and poor leakage-proof property and thermal reliability, restricting the application of phase change microcapsules. Herein, a novel paraffin@lead tungstate@silicon dioxide double-shelled microcapsule (Pn@PWO@SiO2) has been successfully constructed by the emulsion-templated interfacial polycondensation and applied in the waterborne polyurethane (WPU). The results indicated that a SiO2 layer with controlled thickness was formed on the PbWO4 shell. The Pn@PWO@SiO2 microcapsules have exhibited superior leakage-proof properties and thermal reliability through double-shelled protection, and the leakage rate decreased by at least 54.11% compared to that of Pn@PWO microcapsules. The SiO2 layer with abundant polar groups ameliorated the wettability of microcapsules and the interfacial compatibility between microcapsules and the WPU matrix. The tensile strength of WPU/Pn@PWO@SiO2-2 composites reached 10.98 MPa, which was over 7 times greater than that of WPU/Pn@PWO composites. In addition, WPU/Pn@PWO@SiO2-2 composites with a latent heat capacity of over 41 J/g exhibited efficient phase change stability and γ-ray shielding properties. Also, the mass attenuation coefficients reached 1.38 cm2/g at 105.3 keV and 1.12 cm2/g at 86.5 keV, respectively. These properties will greatly promote the application of WPU/Pn@PWO@SiO2 composites into γ-ray-shielding devices with thermal regulation.
RESUMEN
Smartphone has long been considered as one excellent platform for disease screening and diagnosis, especially when combined with microfluidic paper-based analytical devices (µPADs) that feature low cost, ease of use, and pump-free operations. In this paper, we report a deep learning-assisted smartphone platform for ultra-accurate testing of paper-based microfluidic colorimetric enzyme-linked immunosorbent assay (c-ELISA). Different from existing smartphone-based µPAD platforms, whose sensing reliability is suffered from uncontrolled ambient lighting conditions, our platform is able to eliminate those random lighting influences for enhanced sensing accuracy. We first constructed a dataset that contains c-ELISA results (n = 2048) of rabbit IgG as the model target on µPADs under eight controlled lighting conditions. Those images are then used to train four different mainstream deep learning algorithms. By training with these images, the deep learning algorithms can well eliminate the influences of lighting conditions. Among them, the GoogLeNet algorithm gives the highest accuracy (>97%) in quantitative rabbit IgG concentration classification/prediction, which also provides 4% higher area under curve (AUC) value than that of the traditional curve fitting results analysis method. In addition, we fully automate the whole sensing process and achieve the "image in, answer out" to maximize the convenience of the smartphone. A simple and user-friendly smartphone application has been developed that controls the whole process. This newly developed platform further enhances the sensing performance of µPADs for use by laypersons in low-resource areas and can be facilely adapted to the real disease protein biomarkers detection by c-ELISA on µPADs.
Asunto(s)
Aprendizaje Profundo , Técnicas Analíticas Microfluídicas , Teléfono Inteligente , Colorimetría , Reproducibilidad de los Resultados , Ensayo de Inmunoadsorción Enzimática , Inmunoglobulina G , PapelRESUMEN
DNA alkylating agents are widely used in anticancer pharmacology. Although shown to induce cross-linking and/or methylation of DNA, how they affect the mechanical properties of DNA and activity of DNA enzymes remains to be elucidated. Here, we perform single-molecule optical tweezer experiments on DNA treated with alkylating agents, including melphalan, cisplatin, and dacarbazine. While all three drugs induce a significant increase of overstretching force and a reduction of hysteresis, suggesting stabilization of DNA against shearing forces, their effects on elasticity of DNA were quite different, with the largest change in persistence length induced by cisplatin. Furthermore, we find that these alkylating-agent-induced changes on DNA have different effects on processivity of DNA polymerase, with melphalan and cisplatin showing significantly reduced activity and dacarbazine showing little effect. Overall, our results provide new insights into the effects for these alkylating agents, which could potentially facilitate a better design of related drugs.
Asunto(s)
Alquilantes , Melfalán , Alquilantes/farmacología , Melfalán/farmacología , Cisplatino , Antineoplásicos Alquilantes/farmacología , Dacarbazina , ADN , Análisis EspectralRESUMEN
Malignancies can become reliant on glutamine as an alternative energy source and as a facilitator of aberrant DNA methylation, thus implicating glutaminase (GLS) as a potential therapeutic target. We demonstrate preclinical synergy of telaglenastat (CB-839), a selective GLS inhibitor, when combined with azacytidine (AZA), in vitro and in vivo, followed by a phase Ib/II study of the combination in patients with advanced MDS. Treatment with telaglenastat/AZA led to an ORR of 70% with CR/mCRs in 53% patients and a median overall survival of 11.6 months. scRNAseq and flow cytometry demonstrated a myeloid differentiation program at the stem cell level in clinical responders. Expression of non-canonical glutamine transporter, SLC38A1, was found to be overexpressed in MDS stem cells; was associated with clinical responses to telaglenastat/AZA and predictive of worse prognosis in a large MDS cohort. These data demonstrate the safety and efficacy of a combined metabolic and epigenetic approach in MDS.