Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Langmuir ; 40(15): 8002-8014, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38566445

RESUMEN

Graphene oxide (GO) exhibits a strong adsorption capacity for the removal of heavy metal ions from liquids, making it a topic of increasing interest among researchers. However, a significant challenge persists in the preparation of graphene oxide-based adsorbents that possess both high structural stability and excellent adsorption capacity. In this paper, a green and environmentally friendly ternary composite aerogel based on graphene was successfully synthesized. The adsorption capacity of graphene oxide was enhanced through diethylenetriaminepentaacetic acid modification, while the incorporation of composite carboxymethyl cellulose improved the structural stability of the composite aerogel in liquid. The composite aerogel demonstrates robust interactions between its components and features a multiscale porous structure. Adsorption tests conducted with Pb(II) revealed that the GO/DTPA/CMC (GDC) composite aerogel exhibits a favorable adsorption capacity. The study of adsorption kinetics and isotherms indicated that the adsorption process follows the quasi-secondary adsorption model and Freundlich adsorption model, suggesting a chemical multilayer adsorption mechanism, and the maximum adsorption capacity for Pb(II) ions was 521.917 mg/g based on the quasi-quadratic kinetic model fitting. X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) analyses, performed before and after adsorption, confirmed that the adsorption of Pb(II) primarily occurs through chelation, complexation, proton exchange, and electrostatic interactions between ions and active sites such as hydroxyl and carboxyl groups. This study presents an innovative strategy for simultaneously enhancing the adsorption properties of graphene oxide-based composite aerogels and ensuring solution stability.

2.
Environ Sci Technol ; 58(5): 2166-2184, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38275135

RESUMEN

Environmental pollutants have been recognized for their ability to induce various adverse outcomes in both the environment and human health, including inflammation, apoptosis, necrosis, pyroptosis, and autophagy. Understanding these biological mechanisms has played a crucial role in risk assessment and management efforts. However, the recent identification of ferroptosis as a form of programmed cell death has emerged as a critical mechanism underlying pollutant-induced toxicity. Numerous studies have demonstrated that fine particulates, heavy metals, and organic substances can trigger ferroptosis, which is closely intertwined with lipid, iron, and amino acid metabolism. Given the growing evidence linking ferroptosis to severe diseases such as heart failure, chronic obstructive pulmonary disease, liver injury, Parkinson's disease, Alzheimer's disease, and cancer, it is imperative to investigate the role of pollutant-induced ferroptosis. In this review, we comprehensively analyze various pollutant-induced ferroptosis pathways and intricate signaling molecules and elucidate their integration into the driving and braking axes. Furthermore, we discuss the potential hazards associated with pollutant-induced ferroptosis in various organs and four representative animal models. Finally, we provide an outlook on future research directions and strategies aimed at preventing pollutant-induced ferroptosis. By enhancing our understanding of this novel form of cell death and developing effective preventive measures, we can mitigate the adverse effects of environmental pollutants and safeguard human and environmental health.


Asunto(s)
Contaminantes Ambientales , Ferroptosis , Animales , Humanos , Ecotoxicología , Apoptosis , Muerte Celular , Contaminantes Ambientales/toxicidad
3.
Environ Sci Technol ; 58(20): 8643-8653, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38676641

RESUMEN

Antimicrobial nanomaterials frequently induce inflammatory reactions within lung tissues and prompt apoptosis in lung cells, yielding a paradox due to the inherent anti-inflammatory character of apoptosis. This paradox accentuates the elusive nature of the signaling cascade underlying nanoparticle (NP)-induced pulmonary inflammation. In this study, we unveil the pivotal role of nano-microflora interactions, serving as the crucial instigator in the signaling axis of NP-induced lung inflammation. Employing pulmonary microflora-deficient mice, we provide compelling evidence that a representative antimicrobial nanomaterial, silver (Ag) NPs, triggers substantial motility impairment, disrupts quorum sensing, and incites DNA leakage from pulmonary microflora. Subsequently, the liberated DNA molecules recruit caspase-1, precipitating the release of proinflammatory cytokines and activating N-terminal gasdermin D (GSDMD) to initiate pyroptosis in macrophages. This pyroptotic cascade culminates in the emergence of severe pulmonary inflammation. Our exploration establishes a comprehensive mechanistic axis that interlinks the antimicrobial activity of Ag NPs, perturbations in pulmonary microflora, bacterial DNA release, macrophage pyroptosis, and consequent lung inflammation, which helps to gain an in-depth understanding of the toxic effects triggered by environmental NPs.


Asunto(s)
Neumonía , Piroptosis , Piroptosis/efectos de los fármacos , Ratones , Animales , Neumonía/inducido químicamente , Neumonía/patología , Plata/toxicidad , Nanopartículas del Metal/toxicidad , Macrófagos/efectos de los fármacos , Inflamación
4.
Pestic Biochem Physiol ; 200: 105810, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38582582

RESUMEN

Ectropis grisescens (Lepidoptera: Geometridae) is a destructive tea pest in China. Mimesis, characterized by changing body color, is an important trait of E. grisescens larvae. Hence, identifying melanin pathway-related genes may contribute to developing new pest control strategies. In the present study, we cloned Egebony, a gene potentially involved in melanin pigmentation in E. grisescens, and subsequently conducted CRISPR/Cas9-mediated targeted mutagenesis of Egebony to analyze its role in pigmentation and development. At the larvae, prepupae, and pupae stages, Egebony-knockout individuals exhibited darker pigmentation than the wild-type. However, Egebony knockout did not impact the colors of sclerotized appendants, including ocelli, setae, and claws. While mutant pupae could successfully develop into moths, they were unable to emerge from the puparium. Notably, embryo hatchability and larval survival of mutants remained normal. Further investigation indicated that mutant pupae exhibited significantly stronger shearing force than the wild-type, with the pigmented layer of mutant pupae appearing darker and thicker. Collectively, these results suggest that the loss of Egebony might increase the rigidity of the puparium and prevent moth eclosion. This study provides new insights into understanding the function and diversification of ebony in insect development and identifies a lethal gene that can be manipulated for developing effective pest control strategies.


Asunto(s)
Mariposas Nocturnas , Animales , Mariposas Nocturnas/genética , Melaninas/genética , Sistemas CRISPR-Cas , Larva/genética , Pigmentación/genética
5.
J Am Chem Soc ; 145(5): 3108-3120, 2023 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-36700857

RESUMEN

Nicotinamide adenine dinucleotide (NAD) is a critical regulator of metabolic networks, and declining levels of its oxidized form, NAD+, are closely associated with numerous diseases. While supplementing cells with precursors needed for NAD+ synthesis has shown poor efficacy in combatting NAD+ decline, an alternative strategy is the development of synthetic materials that catalyze the oxidation of NADH into NAD+, thereby taking over the natural role of the NADH oxidase (NOX) present in bacteria. Herein, we discovered that metal-nitrogen-doped graphene (MNGR) materials can catalyze the oxidation of NADH into NAD+. Among MNGR materials with different transition metals, Fe-, Co-, and Cu-NGR displayed strong catalytic activity combined with >80% conversion of NADH into NAD+, similar specificity to NOX for abstracting hydrogen from the pyridine ring of nicotinamide, and higher selectivity than 51 other nanomaterials. The NOX-like activity of FeNGR functioned well in diverse cell lines. As a proof of concept of the in vivo application, we showed that FeNGR could specifically target the liver and remedy the metabolic flux anomaly in obesity mice with NAD+-deficient cells. Overall, our study provides a distinct insight for exploration of drug candidates by design of synthetic materials to mimic the functions of unique enzymes (e.g., NOX) in bacteria.


Asunto(s)
Grafito , NAD , Ratones , Animales , NAD/metabolismo , Oxidación-Reducción , Mamíferos/metabolismo , Bacterias/metabolismo , Suplementos Dietéticos
6.
Anal Chem ; 95(14): 6009-6019, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-37005435

RESUMEN

Fine particulates (FPs) are a major class of airborne pollutants. In mammals, FPs may reach the alveoli through the respiratory system, cross the air-blood barrier, spread into other organs, and induce hazardous effects. Although birds have much higher respiratory risks to FPs than mammals, the biological fate of inhaled FPs in birds has rarely been explored. Herein, we attempted to disclose the key properties that dictate the lung penetration of nanoparticles (NPs) by visualizing a library of 27 fluorescent nanoparticles (FNPs) in chicken embryos. The FNP library was prepared by combinational chemistry to tune their compositions, morphologies, sizes, and surface charges. These NPs were injected into the lungs of chicken embryos for dynamic imaging of their distributions by IVIS Spectrum. FNPs with diameters <16 nm could cross the air-blood barrier in 20 min, spread into the blood, and accumulate in the yolk sac. In contrast, large FNPs (>30 nm) were mainly retained in the lungs and rarely detected in other tissues/organs. In addition to size, surface charge was the secondary determinant for NPs to cross the air-blood barrier. Compared to cationic and anionic particles, neutrally charged FNPs showed the fastest lung penetration. A predictive model was therefore developed to rank the lung penetration capability of FNPs by in silico analysis. The in silico predictions could be well validated in chicks by oropharyngeal exposure to six FNPs. Overall, our study discovered the key properties of NPs that are responsible for their lung penetration and established a predictive model that will greatly facilitate respiratory risk assessments of nanoproducts.


Asunto(s)
Pollos , Nanopartículas , Embrión de Pollo , Animales , Barrera Alveolocapilar , Nanopartículas/química , Pulmón , Colorantes , Tamaño de la Partícula , Mamíferos
7.
Planta ; 258(2): 36, 2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37395789

RESUMEN

MAIN CONCLUSION: This review provides a direction for crop quality improvement and ideas for further research on the application of CRISPR/Cas9 gene editing technology for crop improvement. Various important crops, such as wheat, rice, soybean and tomato, are among the main sources of food and energy for humans. Breeders have long attempted to improve crop yield and quality through traditional breeding methods such as crossbreeding. However, crop breeding progress has been slow due to the limitations of traditional breeding methods. In recent years, clustered regularly spaced short palindromic repeat (CRISPR)/Cas9 gene editing technology has been continuously developed. And with the refinement of crop genome data, CRISPR/Cas9 technology has enabled significant breakthroughs in editing specific genes of crops due to its accuracy and efficiency. Precise editing of certain key genes in crops by means of CRISPR/Cas9 technology has improved crop quality and yield and has become a popular strategy for many breeders to focus on and adopt. In this paper, the present status and achievements of CRISPR/Cas9 gene technology as applied to the improvement of quality in several crops are reviewed. In addition, the shortcomings, challenges and development prospects of CRISPR/Cas9 gene editing technology are discussed.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Humanos , Sistemas CRISPR-Cas/genética , Mejoramiento de la Calidad , Fitomejoramiento , Productos Agrícolas/genética , Genoma de Planta/genética
8.
Langmuir ; 39(9): 3350-3357, 2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36802638

RESUMEN

The photocatalytic enhancement of sliver-based metals compounded with semiconductor materials has been demonstrated. However, there are relatively few studies on the effect of particle size in the system on photocatalytic performance. In this paper, silver nanoparticles of two different sizes, 25 and 50 nm, were prepared by a wet chemical method and subsequently sintered to obtain a photocatalyst with a core-shell structure. The photocatalyst Ag@TiO2-50/150 prepared in this study has a hydrogen evolution rate as high as 4538.90 µmol·g-1·h-1. It is interesting to find that when the ratio of silver core size to composite size is 1:3, the hydrogen yield is almost not affected by the silver core diameter, and the hydrogen production rate is basically the same. In addition, the rate of hydrogen precipitation in air for 9 months was still more than 9 times those of previous studies. This provides a new idea for the study of the oxidation resistance and stability of photocatalysts.

9.
Phys Chem Chem Phys ; 25(18): 12734-12743, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37114468

RESUMEN

Experimental evidence shows that CuFe2O4 exhibits excellent catalytic performance in the SCR reaction. However, there is a lack of in-depth research on its specific reaction mechanism. Our study begins by computing the adsorption model of molecules like NH3 and then goes on to examine the SCR reaction mechanism of NH3 on CuFe2O4 before and after Zn doping. The results indicate that NH3 is chemically adsorbed (-1.26 eV) on the surface and has a strong interaction with the substrate. Importantly, Zn doping provides more favorable reactive sites for NH3 molecules. Subsequent investigation into the NH3 dehydrogenation and SCR reaction processes showed that incorporating Zn can greatly decrease the energy barrier of the most critical step in the reaction (0.58 eV). Additionally, the study also assesses the feasibility of the reaction of adsorbed NO with surface active O atoms to form NO2 (barrier 0.86 eV). Lastly, the sulfur resistance of the catalyst before and after doping is calculated and analyzed, and it is found that Zn doping effectively improves the sulfur resistance. Our study provides valuable theoretical guidance for the development of ferrite spinel and doping modification.

10.
Angew Chem Int Ed Engl ; 62(17): e202217345, 2023 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-36718001

RESUMEN

Antimicrobial resistance (AMR) is one of the biggest threats to the environment and health. AMR rapidly invalidates conventional antibiotics, and antimicrobial nanomaterials have been increasingly explored as alternatives. Interestingly, several antimicrobial nanomaterials show AMR-independent antimicrobial effects without detectable new resistance and have therefore been suggested to prevent AMR evolution. In contrast, some are found to trigger the evolution of AMR. Given these seemingly conflicting findings, a timely discussion of the two faces of antimicrobial nanomaterials is urgently needed. This review systematically compares the killing mechanisms and structure-activity relationships of antibiotics and antimicrobial nanomaterials. We then focus on nano-microbe interactions to elucidate the impacts of molecular initiating events on AMR evolution. Finally, we provide an outlook on future antimicrobial nanomaterials and propose design principles for the prevention of AMR evolution.


Asunto(s)
Antibacterianos , Nanoestructuras , Antibacterianos/farmacología , Farmacorresistencia Bacteriana
11.
Angew Chem Int Ed Engl ; 62(27): e202305485, 2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-37138171

RESUMEN

Biofilm formation is a major threat to industry, the environment and human health. While killing of embedded microbes in biofilms may inevitably lead to the evolution of antimicrobial resistance (AMR), catalytic quenching of bacterial communications by lactonase is a promising antifouling approach. Given the shortcomings of protein enzymes, it is attractive to engineer synthetic materials to mimic the activity of lactonase. Herein, an efficient lactonase-like Zn-Nx -C nanomaterial was synthesized by tuning the coordination environment around zinc atoms to mimic the active domain of lactonase for catalytical interception of bacterial communications in biofilm formation. The Zn-Nx -C material could selectively catalyze 77.5 % hydrolysis of N-acylated-L-homoserine lactone (AHL), a critical bacterial quorum sensing (QS) signal in biofilm construction. Consequently, AHL degradation downregulated the expression of QS-related genes in antibiotic resistant bacteria and significantly prevented biofilm formation. As a proof of concept, Zn-Nx -C-coated iron plates prevented 80.3 % biofouling after a month exposure in river. Overall, our study provides a nano-enabled contactless antifouling insight to avoid AMR evolution by engineering nanomaterials for mimicking the key bacterial enzymes (e.g., lactonase) functioning in biofilm construction.


Asunto(s)
Biopelículas , Percepción de Quorum , Humanos , Bacterias/metabolismo , Acil-Butirolactonas/metabolismo , Proteínas Bacterianas/metabolismo
12.
Anal Chem ; 94(35): 12060-12069, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-36001466

RESUMEN

Luminescence detection is a sensitive approach for high-resolution visualization of nano-/macrosized objects, but it is challenging to light invisible insulators owing to their inert surfaces. Herein, we discovered a steric restriction-induced emission (SRIE) effect on nanoscale insulators to light them by fluorogenic probes. The SRIE effect enabled us to specifically differentiate a representative nanoscale insulator, boron nitride (BN) nanosheets, from 18 tested nanomaterials with 420-fold increments of photoluminescence intensity and displayed 3 orders of magnitude linearity for quantitative analysis as well as single-particle level detection. Molecular dynamics simulations indicated that the hydrophobic and electron-resistant surfaces of BN nanosheets restricted intramolecular motions of fluorogenic molecules for blockage of the nonradiative path of excited electrons and activation of the radiative electron transition. Moreover, the lighted BN nanosheets could be successfully visualized in complex cellular and tissue biocontexts. Overall, the SRIE effect will inspire more analytical techniques for inert materials.


Asunto(s)
Iluminación , Nanoestructuras , Electrones , Nanoestructuras/química
13.
Anal Bioanal Chem ; 414(16): 4677-4684, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35538228

RESUMEN

The fates of nanomaterials (NMs) in vivo are greatly dependent on their interactions with human serum proteins. However, the interfacial molecular details of NMs-serum proteins are still difficult to be probed. Herein, the molecular interaction details of human serum albumin (HSA) with Au and SiO2 nanoparticles have been systematically interrogated and compared by using lysine reactivity profiling mass spectrometry (LRP-MS). We demonstrated the biocompatibility of Au is better than SiO2 nanoparticles and the NMs surface charge state played a more important role than particle size in the combination of NMs-HSA at least in the range of 15-40 nm. Our results will contribute to the fundamental mechanism understanding of NMs-serum protein interactions as well as the NMs rational design.


Asunto(s)
Nanopartículas , Nanoestructuras , Humanos , Nanoestructuras/química , Tamaño de la Partícula , Albúmina Sérica Humana , Dióxido de Silicio
14.
Part Fibre Toxicol ; 19(1): 55, 2022 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-35933442

RESUMEN

As an emerging pollutant in the life cycle of plastic products, micro/nanoplastics (M/NPs) are increasingly being released into the natural environment. Substantial concerns have been raised regarding the environmental and health impacts of M/NPs. Although diverse M/NPs have been detected in natural environment, most of them display two similar features, i.e.,high surface area and strong binding affinity, which enable extensive interactions between M/NPs and surrounding substances. This results in the formation of coronas, including eco-coronas and bio-coronas, on the plastic surface in different media. In real exposure scenarios, corona formation on M/NPs is inevitable and often displays variable and complex structures. The surface coronas have been found to impact the transportation, uptake, distribution, biotransformation and toxicity of particulates. Different from conventional toxins, packages on M/NPs rather than bare particles are more dangerous. We, therefore, recommend seriously consideration of the role of surface coronas in safety assessments. This review summarizes recent progress on the eco-coronas and bio-coronas of M/NPs, and further discusses the analytical methods to interpret corona structures, highlights the impacts of the corona on toxicity and provides future perspectives.


Asunto(s)
Contaminantes Ambientales , Nanopartículas , Microplásticos , Nanopartículas/toxicidad , Medición de Riesgo
15.
Int J Mol Sci ; 23(24)2022 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-36555416

RESUMEN

Scopula subpunctaria, an abundant pest in tea gardens, produce type-II sex pheromone components, which are critical for its communicative and reproductive abilities; however, genes encoding the proteins involved in the detection of type-II sex pheromone components have rarely been documented in moths. In the present study, we sequenced the transcriptomes of the male and female S. subpunctaria antennae. A total of 150 candidate olfaction genes, comprising 58 odorant receptors (SsubORs), 26 ionotropic receptors (SsubIRs), 24 chemosensory proteins (SsubCSPs), 40 odorant-binding proteins (SsubOBPs), and 2 sensory neuron membrane proteins (SsubSNMPs) were identified in S. subpunctaria. Phylogenetic analysis, qPCR, and mRNA abundance analysis results suggested that SsubOR46 may be the Orco (non-traditional odorant receptor, a subfamily of ORs) of S. subpunctaria. SsubOR9, SsubOR53, and SsubOR55 belonged to the pheromone receptor (PR) clades which have a higher expression in male antennae. Interestingly, SsubOR44 was uniquely expressed in the antennae, with a higher expression in males than in females. SsubOBP25, SsubOBP27, and SsubOBP28 were clustered into the moth pheromone-binding protein (PBP) sub-family, and they were uniquely expressed in the antennae, with a higher expression in males than in females. SsubOBP19, a member of the GOBP2 group, was the most abundant OBP in the antennae. These findings indicate that these olfactory genes, comprising five candidate PRs, three candidate PBPs, and one candidate GOBP2, may be involved in type II sex pheromone detection. As well as these genes, most of the remaining SsubORs, and all of the SsubIRs, showed a considerably higher expression in the female antennae than in the male antennae. Many of these, including SsubOR40, SsubOR42, SsubOR43, and SsubIR26, were more abundant in female antennae. These olfactory and ionotropic receptors may be related to the detection of host plant volatiles. The results of this present study provide a basis for exploring the olfaction mechanisms in S. subpunctaria, with a focus on the genes involved in type II sex pheromones. The evolutionary analyses in our study provide new insights into the differentiation and evolution of lepidopteran PRs.


Asunto(s)
Mariposas Nocturnas , Receptores Odorantes , Atractivos Sexuales , Animales , Femenino , Masculino , Atractivos Sexuales/genética , Atractivos Sexuales/metabolismo , Filogenia , Olfato/genética , Perfilación de la Expresión Génica/métodos , Mariposas Nocturnas/genética , Mariposas Nocturnas/metabolismo , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Antenas de Artrópodos/metabolismo
16.
Phys Rev Lett ; 127(10): 100406, 2021 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-34533338

RESUMEN

Recent experiments on quantum walks (QWs) demonstrated a full control over the statistics-dependent walks of single particles and two particles in one-dimensional lattices. However, little is known about the general characterization of QWs at the many-body level. Here, we rigorously study QWs, Bloch oscillations, and the quantum Fisher information for three indistinguishable bosons and fermions in one-dimensional lattices using a time-evolving block decimation algorithm and many-body perturbation theory. We show that such strongly correlated QWs not only give rise to statistics-and-interaction-dependent ballistic transports of scattering states and of two- and three-body bound states but also allow a quantum enhanced precision measurement of the gravitational force. In contrast to the QWs of the fermions, the QWs of three bosons exhibit strongly correlated Bloch oscillations, which present a surprising time scaling t^{3} of the Fisher information below a characteristic time t_{0} and saturate to the fundamental limit of t^{2} for t>t_{0}.

17.
Part Fibre Toxicol ; 18(1): 17, 2021 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-33902647

RESUMEN

BACKGROUND: Disruption of microbiota balance may result in severe diseases in animals and phytotoxicity in plants. While substantial concerns have been raised on engineered nanomaterial (ENM) induced hazard effects (e.g., lung inflammation), exploration of the impacts of ENMs on microbiota balance holds great implications. RESULTS: This study found that rare earth oxide nanoparticles (REOs) among 19 ENMs showed severe toxicity in Gram-negative (G-) bacteria, but negligible effects in Gram-positive (G+) bacteria. This distinct cytotoxicity was disclosed to associate with the different molecular initiating events of REOs in G- and G+ strains. La2O3 as a representative REOs was demonstrated to transform into LaPO4 on G- cell membranes and induce 8.3% dephosphorylation of phospholipids. Molecular dynamics simulations revealed the dephosphorylation induced more than 2-fold increments of phospholipid diffusion constant and an unordered configuration in membranes, eliciting the increments of membrane fluidity and permeability. Notably, the ratios of G-/G+ reduced from 1.56 to 1.10 in bronchoalveolar lavage fluid from the mice with La2O3 exposure. Finally, we demonstrated that both IL-6 and neutrophil cells showed strong correlations with G-/G+ ratios, evidenced by their correlation coefficients with 0.83 and 0.92, respectively. CONCLUSIONS: This study deciphered the distinct toxic mechanisms of La2O3 as a representative REO in G- and G+ bacteria and disclosed that La2O3-induced membrane damages of G- cells cumulated into pulmonary microbiota imbalance exhibiting synergistic pulmonary toxicity. Overall, these findings offered new insights to understand the hazard effects induced by REOs.


Asunto(s)
Metales de Tierras Raras , Microbiota , Nanopartículas , Animales , Biotransformación , Ratones , Óxidos
18.
J Am Chem Soc ; 142(46): 19602-19610, 2020 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-33108194

RESUMEN

NADPH oxidase (NOX) as a transmembrane enzyme complex controls the generation of superoxide that plays important roles in immune signaling pathway. NOX inactivation may elicit immunodeficiency and cause chronic granulomatous disease (CGD). Biocompatible synthetic materials with NOX-like activities would therefore be interesting as curative and/or preventive approaches in case of NOX deficiency. Herein, we synthesized a Fe-N doped graphene (FeNGR) nanomaterial that could mimic the activity of NOX by efficiently catalyzing the conversion of NADPH into NADP+ and triggering the generation of oxygen radicals. The resulting FeNGR nanozyme had similar cellular distribution to NOX and is able to mimic the enzyme function in NOX-deficient cells by catalyzing the generation of superoxide and retrieving the immune activity, evidenced by TNF-α, IL-1ß, and IL-6 production in response to Alum exposure. Overall, our study discovered a synthetic material (FeNGR) to mimic NOX and demonstrated its biological function in immune activation of NOX-deficient cells.


Asunto(s)
Materiales Biomiméticos/química , Grafito/química , Hierro/química , NADPH Oxidasas/química , Nitrógeno/química , Materiales Biomiméticos/metabolismo , Colorantes Fluorescentes/química , Humanos , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Modelos Moleculares , NADP/metabolismo , NADPH Oxidasas/metabolismo , Oxidación-Reducción , Peroxidasa/metabolismo , Especies Reactivas de Oxígeno/química , Transducción de Señal , Superóxidos/química , Superóxidos/metabolismo , Células THP-1 , Factor de Necrosis Tumoral alfa/metabolismo
19.
Small ; 16(36): e1907663, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32406193

RESUMEN

It is a big challenge to reveal the intrinsic cause of a nanotoxic effect due to diverse branches of signaling pathways induced by engineered nanomaterials (ENMs). Biotransformation of toxic ENMs involving biochemical reactions between nanoparticles (NPs) and biological systems has recently attracted substantial attention as it is regarded as the upstream signal in nanotoxicology pathways, the molecular initiating event (MIE). Considering that different exposure routes of ENMs may lead to different interfaces for the arising of biotransformation, this work summarizes the nano-bio interfaces and dose calculation in inhalation, dermal, ingestion, and injection exposures to humans. Then, five types of biotransformation are shown, including aggregation and agglomeration, corona formation, decomposition, recrystallization, and redox reactions. Besides, the characterization methods for investigation of biotransformation as well as the safe design of ENMs to improve the sustainable development of nanotechnology are also discussed. Finally, future perspectives on the implications of biotransformation in clinical translation of nanomedicine and commercialization of nanoproducts are provided.


Asunto(s)
Nanoestructuras , Medición de Riesgo , Toxicología , Biotransformación , Humanos , Nanomedicina , Nanopartículas/toxicidad , Nanoestructuras/toxicidad , Nanotecnología , Seguridad , Toxicología/tendencias
20.
Planta ; 252(1): 10, 2020 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-32601995

RESUMEN

MAIN CONCLUSION: Transcriptomic studies in resistant and susceptible tea cultivars have been performed to reveal the different defense molecular mechanisms of tea after E. onukii feeding. The molecular mechanism by which tea plants respond to small green leafhopper Empoasca onukii (Matsuda) damage is unclear. Using the resistant tea plant cultivar Juyan (JY) and the susceptible tea plant cultivar Enbiao (EB) as materials, this study performed RNA-seq on tea leaf samples collected at three time points (6 h, 12 h, 24 h) during exposure of the plants to leafhopper to reveal the molecular mechanisms that are activated in susceptible and resistant tea plant cultivars in response to leafhopper damage. The numbers of DEGs in the susceptible tea cultivar during early (6 h) and late (24 h) stages of leafhopper induction were higher than those in the resistant cultivar at the same time points. The stress responses to leafhopper were most intense at 12 h in both tea cultivars. Pathway enrichment analysis showed that most up-regulated DEGs and their related metabolic pathways were similar in the two tea cultivars. However, during the early stage of leafhopper induction (6 h), jasmonic acid (JA)-related genes were significantly up-regulated in the resistant cultivar. The terpenoid biosynthetic pathway and the α-linolenic acid metabolic pathway were activated earlier in the resistant cultivar and remained activated until the late stage of leafhopper damage. Our results confirmed that after leafhopper damage, the resistant tea cultivar activated its defense responses earlier than the susceptible cultivar, and these defense responses were mainly related to terpenoid metabolism and JA biosynthetic pathway. The results provide important clues for further studies on resistance strategy of tea plants to pest.


Asunto(s)
Camellia sinensis/genética , Resistencia a la Enfermedad/genética , Hemípteros/fisiología , Enfermedades de las Plantas/inmunología , Transcriptoma , Animales , Vías Biosintéticas , Camellia sinensis/inmunología , Camellia sinensis/parasitología , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Enfermedades de las Plantas/parasitología , Reguladores del Crecimiento de las Plantas/metabolismo , Terpenos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA