Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Huan Jing Ke Xue ; 44(1): 219-230, 2023 Jan 08.
Artículo en Zh | MEDLINE | ID: mdl-36635810

RESUMEN

Lake Luoma is an important storage lake for the Eastern route of the South-to-North Water Diversion Project (NSBD), which has many functions including flood control and irrigation, drinking water supply, and ecological maintenance. In order to understand the succession patterns and driving factors of water quality in Lake Luoma, we used monthly monitoring data from 2009 to 2020 in combination with historical data from 1996 to 2008. The long-term succession patterns, seasonal dynamics, and spatial patterns of total nitrogen (TN), total phosphorus (TP), permanganate index, and ammonia nitrogen (NH+4-N) were examined, and the influence of meteorological and hydrological factors on water quality was explored through correlation analyses and generalized additive models. The results showed that it remained in the status of grade Ⅳ-inferior Ⅴ over the past 25 years. The concentration of TN, which was the main pollutant, changed significantly (1.06-3.49 mg·L-1), experiencing three stages of gradual decline (1996-2002), significant interannual fluctuation (2002-2015), and significant increase (2015-2020). Permanganate index decreased significantly (2.97-6.38 mg·L-1), whereas TP and NH+4-N concentration fluctuated slightly, ranging from 0.024-0.076 mg·L-1 and 0.11-0.69 mg·L-1, respectively. The concentration of TN and TP increased abnormally in the summer of 2017-2020, reaching 3.30 mg·L-1 and 0.14 mg·L-1 in August, respectively, which was approximately 1.5 and 2.4 times the annual average. In terms of seasonal dynamics, the seasonal variation in water quality between summer/autumn and winter/spring reversed after 2015, with water quality in summer/autumn being worse than that in winter and spring, indicating the exacerbation of eutrophication. The water quality in the southern area was obviously better than that in the northern area. The input of pollutants from the Yihe River and Middle Canal increased with water quantity since 2015, which drove the water quality deterioration through nutrients. Our results suggested that the water quality of Lake Luoma should be improved by strengthening exogenous pollution reduction, endogenous control, polder dismantling, and ecological restoration.


Asunto(s)
Contaminantes Ambientales , Contaminantes Químicos del Agua , Calidad del Agua , Lagos , Monitoreo del Ambiente/métodos , Inundaciones , Fósforo/análisis , Nitrógeno/análisis , Eutrofización , Contaminantes Químicos del Agua/análisis , Contaminantes Ambientales/análisis , China
2.
Insects ; 14(10)2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37887812

RESUMEN

Plenty of freshwater species, especially macroinvertebrates that are essential to the provision of numerous ecosystem functions, encounter higher mortality due to acute hypoxia. However, within the family Chironomidae, a wide range of tolerance to hypoxia/anoxia is displayed. Propsilocerus akamusi depends on this great tolerance to become a dominant species in eutrophic lakes. To further understand how P. akamusi responds to acute hypoxic stress, we used multi-omics analysis in combination with histomorphological characteristics and physiological indicators. Thus, we set up two groups-a control group (DO 8.4 mg/L) and a hypoxic group (DO 0.39 mg/L)-to evaluate enzyme activity and the transcriptome, metabolome, and histomorphological characteristics. With blue-black chromatin, cell tightness, cell membrane invagination, and the production of apoptotic vesicles, tissue cells displayed typical apoptotic features in the hypoxic group. Although lactate dehydrogenase (LDH), alcohol dehydrogenase (ADH), catalase (CAT), and Na+/K+ -ATPase (NKA) activities were dramatically enhanced under hypoxic stress, glycogen content, and superoxide dismutase (SOD) activities were significantly reduced compared to the control group. The combined analysis of the transcriptome and metabolome, which further demonstrated, in addition to carbohydrates, including glycogen, the involvement of energy metabolism pathways, including fatty acid, protein, trehalose, and glyoxylate cycles, provided additional support for the aforementioned findings. Lactate is the end product of glycogen degradation, and HIF-1 plays an important role in promoting glycogenolysis in acute hypoxic conditions. However, we discovered that the ethanol tested under hypoxic stress likely originates from the symbiodinium of P. akamusi. These results imply that some parameters related to energy metabolism, antioxidant enzyme activities, and histomorphological features may be used as biomarkers of eutrophic lakes in Chironomus riparius larvae. The study also provides a scientific reference for assessing toxicity and favoring policies to reduce their impact on the environment.

3.
Huan Jing Ke Xue ; 43(6): 3097-3105, 2022 Jun 08.
Artículo en Zh | MEDLINE | ID: mdl-35686779

RESUMEN

Lake Hongze is an essential storage lake for the "Eastern Route of the South-North Water Diversion Project" and plays an important role in climate adjustment and flood prevention and control. To study the structural evolution of phytoplankton communities in Lake Hongze and their relationship with environmental factors and to understand the status of the ecosystem of Lake Hongze before the "ten-year fishing ban," monthly monitoring was carried out from 2015 to 2020. During the study period, total nitrogen showed a significant downward trend starting in 2017, the total phosphorus and chemical oxygen demand declined slightly, the water temperature had no obvious change trend, and the water depth and transparency increased from 2015 to 2018 and then declined significantly. A total of 102 genera of phytoplankton in eight phyla were identified, with a total of 310 species. The dominant phytoplankton phyla mainly included Chlorophyta and Bacillariophyta, followed by Cyanophyta and Pyrrophyta. The dominant genera were Scenedesmus, Aulacoseira, Cryptomonas, Cyclotella, Tetraedron, Microcystis, and Dolichospermum. The results of non-metric multidimensional scaling (NMDS) showed that the structural composition of the phytoplankton community differed significantly among years, seasons, and sampling areas, mainly due to the redistribution among dominant genera. NMDS analysis also indicated that variation in the phytoplankton community in Lake Hongze was mainly related to water temperature, total nitrogen, total phosphorus, water depth, and transparency. Total nitrogen, water depth, and phytoplankton community structure were significantly correlated with interannual succession, whereas water temperature, total nitrogen, and phytoplankton seasonal succession were also significantly correlated. Combined with the measures taken by the management department in recent years, the changes in the structure of the phytoplankton community may be related to the removal of the fence and other management and restoration measures in Lake Hongze.


Asunto(s)
Chlorophyta , Cianobacterias , Diatomeas , China , Ecosistema , Monitoreo del Ambiente , Lagos/química , Nitrógeno/análisis , Fósforo/análisis , Fitoplancton , Estaciones del Año , Agua/análisis
4.
Huan Jing Ke Xue ; 42(8): 3753-3762, 2021 Aug 08.
Artículo en Zh | MEDLINE | ID: mdl-34309261

RESUMEN

Hongze Lake is the fourth largest freshwater lake in China and is an important source of water for surrounding industrial and agricultural processes and fishery resources. Analyzing the changes in the zooplankton community structure in Hongze Lake can provide scientific support for the scientific management of its ecology and environment. A one-year monthly monitoring study was conducted from March 2017 to February 2018 to analyze the temporal and spatial changes in species composition, density, and biomass of zooplankton in Hongze Lake, as well as the seasonal changes in community diversity and dominant species. Canonical correspondence analysis was employed to explore the relationships between the temporal and spatial changes in zooplankton and the environmental factors of Hongze Lake. The results showed that the average annual density of zooplankton in Hongze Lake was 383.87 ind ·L-1, and the average annual biomass was 1.36 mg ·L-1. The community structure of zooplankton in Hongze Lake varied greatly across time and space. Community structure varied greatly in summer, and zooplankton density and biomass reached a maximum in autumn. The community structure of the zooplankton was the simplest in winter. Chengzi Bay and Lihewa Bay exhibited an abundance of many different zooplankton species with limited spatial differentiation, whereas the zooplankton in the overflow area comprised fewer species but exhibited greater spatial variation. In summer, water level and temperature are the dominant factors, whereas in autumn and winter, the dominant factors are water temperature, nutrients, and chlorophyll. Canonical correspondence analysis showed that the temporal and spatial changes in zooplankton community structure in Hongze Lake were mainly determined by water level, total phosphorus, water temperature, and total nitrogen content. Water level fluctuation has the greatest direct impact on zooplankton community structure, and water quality regulation has indirect impact.


Asunto(s)
Lagos , Zooplancton , Animales , China , Monitoreo del Ambiente , Fitoplancton , Estaciones del Año
5.
Huan Jing Ke Xue ; 41(3): 1176-1183, 2020 Mar 08.
Artículo en Zh | MEDLINE | ID: mdl-32608619

RESUMEN

Stable isotope tracers have been widely applied to water sources and evolution, transforming relations, and pollution sources of various water bodies. This study analyzed the spatial variations of δ2H and δ18O in river and lake waters during flooding season, and revealed the factors underlying their variations along the middle and lower reaches of the Yangtze River based on a field sampling campaign in July 2018. Our results showed that δ2H and δ18O in the Yangtze River water were enriched from the Three Gorges reservoir region to the lower reaches of the Yangtze River, which was closely linked to isotopic variations in precipitation. There was no significant difference in δ2H and δ18O values in the mainstream river waters between the Three Gorges Reservoir Region and Yichang-Chenglingji. However, d-excess values in river water displayed a small variation range. In contrast, δ2H and δ18O values in the lake group from Dongting to Jianghan and Huayang to Poyang Lake were lower than in the lake group from Taihu to the Yangtze Delta. Negative d-excess values were observed in lake water from Taihu to the Yangtze Delta, suggesting the combined influence of enriched isotopic compositions in precipitation and strong evaporative enrichment. Of the lakes, the highest isotopic values were found in Dianshan Lake and Datong Lake, whereas the lowest isotopic values were recorded in Dongting Lake and Poyang Lake because of their direct connection with the Yangtze River. The water regimes of Dongting Lake and Poyang Lake were influenced by the Yangtze River, especially when a high water level of the Yangtze River occurred, and thus altered the isotopic compositions of Dongting Lake and Poyang Lake water. Hence, these findings will provide scientific data revealing the precipitation-river-lake interactions and investigating the rational utilization and management of water resources in the middle and lower reaches of the Yangtze River regions.

6.
Huan Jing Ke Xue ; 41(4): 1648-1656, 2020 Apr 08.
Artículo en Zh | MEDLINE | ID: mdl-32608670

RESUMEN

As a water storage lake for the South-to-North Water Diversion Project, it is crucial to examine changes in aquatic ecosystem structures in Lake Luoma, Jiangsu province. Field sampling was carried out in Lake Luoma monthly from 2014 to 2018 to study the relationship between the phytoplankton community structure and environmental factors. During the studied period, total nitrogen, permanganate index, and electrical conductivity in water column gradually increased, whereas fluoride content declined. The pattern of total phosphorus and dissolved oxygen was not distinct. A total of 71 genera of phytoplankton were identified from 2014 to 2018, and the average monthly biomass variation ranged from 0.16 to 5.51 mg·L-1. Bacillariophyta and Chlorophyta were the dominant phyla in the four years, followed by Pyrrophyta and Cryptophyta. The dominant genera were Synedra sp., Chroomonas spp., Aulacoseira spp., Dinobryon sp., Scenedesmus spp. , Fragilaria spp., Mougeotia sp. , Ankistrodesmus sp. , and Euglena spp. The results showed that the phytoplankton community structure significantly changed in the four years, which was mainly ascribed to the redistribution of biomass. Specifically, in addition to the dominance of Bacillariophyta and Chlorophyta, the dominance of Pyrrophyta and Cyanophyta increased during the last two years. Non-metric multidimensional scaling analysis showed that variation of the phytoplankton community in Lake Luoma was mainly related to total nitrogen, fluoride, water temperature, total phosphorus, dissolved oxygen, pH, conductivity, and permanganate index, among which the total nitrogen, water temperature, and fluoride concentration dominated the phytoplankton community change after the generalized additive model test. Water temperature is the driving factor affecting seasonal changes of the phytoplankton community. Total nitrogen and fluoride concentrations are the driving factors affecting the interannual variation in the phytoplankton community. Our study indicated that in recent years, the implementation of the ban on sand mining and demolition of the enclosed aquaculture in Lake Luoma has affected the water environment, resulting in a significant succession of the phytoplankton community.


Asunto(s)
Lagos , Fitoplancton , China , Ecosistema , Monitoreo del Ambiente , Nitrógeno/análisis , Fósforo/análisis , Estaciones del Año
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA