Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Plant Physiol ; 193(2): 1109-1125, 2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37341542

RESUMEN

ß-Galactosidases (Bgals) remove terminal ß-D-galactosyl residues from the nonreducing ends of ß-D-galactosidases and oligosaccharides. Bgals are present in bacteria, fungi, animals, and plants and have various functions. Despite the many studies on the evolution of BGALs in plants, their functions remain obscure. Here, we identified rice (Oryza sativa) ß-galactosidase9 (OsBGAL9) as a direct target of the heat stress-induced transcription factor SPOTTED-LEAF7 (OsSPL7), as demonstrated by protoplast transactivation analysis and yeast 1-hybrid and electrophoretic mobility shift assays. Knockout plants for OsBGAL9 (Osbgal9) showed short stature and growth retardation. Histochemical ß-glucuronidase (GUS) analysis of transgenic lines harboring an OsBGAL9pro:GUS reporter construct revealed that OsBGAL9 is mainly expressed in internodes at the mature stage. OsBGAL9 expression was barely detectable in seedlings under normal conditions but increased in response to biotic and abiotic stresses. Ectopic expression of OsBGAL9 enhanced resistance to the rice pathogens Magnaporthe oryzae and Xanthomonas oryzae pv. oryzae, as well as tolerance to cold and heat stress, while Osbgal9 mutant plants showed the opposite phenotypes. OsBGAL9 localized to the cell wall, suggesting that OsBGAL9 and its plant putative orthologs likely evolved functions distinct from those of its closely related animal enzymes. Enzyme activity assays and analysis of the cell wall composition of OsBGAL9 overexpression and mutant plants indicated that OsBGAL9 has activity toward galactose residues of arabinogalactan proteins (AGPs). Our study clearly demonstrates a role for a member of the BGAL family in AGP processing during plant development and stress responses.


Asunto(s)
Oryza , Xanthomonas , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción del Choque Térmico/genética , Genes de Plantas , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente/metabolismo , Xanthomonas/fisiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología
2.
Appl Microbiol Biotechnol ; 108(1): 69, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38183488

RESUMEN

While glycoside hydrolase family 1 (GH1) enzymes mostly catalyze hydrolysis reactions, rice Os9BGlu31 preferentially catalyzes transglycosylation to transfer a glucosyl moiety to another aglycone moiety to form a new glycosylated compound through a retaining mechanism. In this study, Os9BGlu31 was used to synthesize eight phenolic acid glucosyl esters, which were evaluated for activities in cholangiocarcinoma cells. The transglycosylation products of Os9BGlu31 wild type and its mutant variants were detected, produced on a milligram scale, and purified, and their structures were characterized by NMR spectroscopy. The transglycosylation products were evaluated by antioxidant and anti-proliferative assays, followed by an anti-migration assay for the selected phenolic acid glucosyl ester. Os9BGlu31 mutants produced higher yield and activity than wild-type enzymes on phenolic acids to produce phenolic acid glucosyl esters. Among these, gallic acid glucosyl ester (ß-glucogallin) had the highest antioxidant activity and anti-proliferative activity in cholangiocarcinoma cells. It also inhibited the migration of cholangiocarcinoma cells. Our study demonstrated that rice Os9BGlu31 transglucosidase is a promising enzyme for glycosylation of bioactive compounds in one-step reactions and provides evidence that ß-glucogallin inhibits cell proliferation and migration of cholangiocarcinoma cells. KEY POINTS: • Os9BGlu31 transglucosidases produced phenolic acid glucosyl esters for bioactivity testing. • Phenolic acid glucosyl esters were tested for cytotoxicity in cholangiocarcinoma cells. • ß-Glucogallin displayed the highest inhibition of cholangiocarcinoma cell growth.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Oryza , Antioxidantes , Ésteres , Conductos Biliares Intrahepáticos
3.
Int J Mol Sci ; 25(10)2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38791218

RESUMEN

KCTD1 plays crucial roles in regulating both the SHH and WNT/ß-catenin signaling pathways, which are essential for tooth development. The objective of this study was to investigate if genetic variants in KCTD1 might also be associated with isolated dental anomalies. We clinically and radiographically investigated 362 patients affected with isolated dental anomalies. Whole exome sequencing identified two unrelated families with rare (p.Arg241Gln) or novel (p.Pro243Ser) variants in KCTD1. The variants segregated with the dental anomalies in all nine patients from the two families. Clinical findings of the patients included taurodontism, unseparated roots, long roots, tooth agenesis, a supernumerary tooth, torus palatinus, and torus mandibularis. The role of Kctd1 in root development is supported by our immunohistochemical study showing high expression of Kctd1 in Hertwig epithelial root sheath. The KCTD1 variants in our patients are the first variants found to be located in the C-terminal domain, which might disrupt protein-protein interactions and/or SUMOylation and subsequently result in aberrant WNT-SHH-BMP signaling and isolated dental anomalies. Functional studies on the p.Arg241Gln variant are consistent with an impact on ß-catenin levels and canonical WNT signaling. This is the first report of the association of KCTD1 variants and isolated dental anomalies.


Asunto(s)
Anomalías Dentarias , Humanos , Anomalías Dentarias/genética , Femenino , Masculino , Vía de Señalización Wnt/genética , Linaje , Niño , Secuenciación del Exoma , Adolescente , Variación Genética , beta Catenina/genética , beta Catenina/metabolismo , Adulto , Proteínas Co-Represoras
4.
Clin Genet ; 103(6): 714-716, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36601665

RESUMEN

A mutation in DKK1 gene leads to inhibitory DKK1 function, over-activation of WNT/ß-catenin signaling, disruptive development of dental epithelium, and subsequent mesiodens formation.


Asunto(s)
Anomalías Dentarias , Humanos , Vía de Señalización Wnt , beta Catenina , Péptidos y Proteínas de Señalización Intercelular
5.
Phys Chem Chem Phys ; 25(12): 8767-8778, 2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36912034

RESUMEN

Dihydropyrimidinase (DHPase) is a key enzyme in the pyrimidine pathway, the catabolic route for synthesis of ß-amino acids. It catalyses the reversible conversion of 5,6-dihydrouracil (DHU) or 5,6-dihydrothymine (DHT) to the corresponding N-carbamoyl-ß-amino acids. This enzyme has the potential to be used as a tool in the production of ß-amino acids. Here, the reaction mechanism and origin of stereospecificity of DHPases from Saccharomyces kluyveri and Sinorhizobium meliloti CECT4114 were investigated and compared using a quantum mechanical cluster approach based on density functional theory. Two models of the enzyme active site were designed from the X-ray crystal structure of the native enzyme: a small cluster to characterize the mechanism and the stationary points and a large model to probe the stereospecificity and the role of stereo-gate-loop (SGL) residues. It is shown that a hydroxide ion first performs a nucleophilic attack on the substrate, followed by the abstraction of a proton by Asp358, which occurs concertedly with protonation of the ring nitrogen by the same residue. For the DHT substrate, the enzyme displays a preference for the L-configuration, in good agreement with experimental observation. Comparison of the reaction energetics of the two models reveals the importance of SGL residues in the stereospecificity of catalysis. The role of the conserved Tyr172 residue in transition-state stabilization is confirmed as the Tyr172Phe mutation increases the activation barrier of the reaction by ∼8 kcal mol-1. A detailed understanding of the catalytic mechanism of the enzyme could offer insight for engineering in order to enhance its activity and substrate scope.


Asunto(s)
Amidohidrolasas , Protones , Amidohidrolasas/química , Dominio Catalítico , Aminoácidos
6.
Int J Paediatr Dent ; 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38013205

RESUMEN

BACKGROUND: In order to generate a normal set of teeth, fine-tuning of Wnt/ß-catenin signaling is required, in which WNT ligands bind to their inhibitors or WNT inhibitors bind to their co-receptors. Lrp4 regulates the number of teeth and their morphology by modulating Wnt/ß-catenin signaling as a Wnt/ß-catenin activator or inhibitor, depending on its interactions with the partner proteins, such as Sostdc1 and Dkk1. AIM: To investigate genetic etiologies of dental anomalies involving LRP4 in a Thai cohort of 250 children and adults with dental anomalies. DESIGN: Oral and radiographic examinations and whole exome sequencing were performed for every patient. RESULTS: Two novel (p.Leu1356Arg and p.Ala1702Gly) and three recurrent (p.Arg263His, p.Gly1314Ser, and p.Asn1385Ser) rare variants in low-density lipoprotein receptor-related protein 4 (LRP4: MIM 604270) were identified in 11 patients. Oral exostoses were observed in five patients. CONCLUSION: Antagonism of Bmp signaling by Sostdc1 requires the presence of Lrp4. Mice lacking Lrp4 have been demonstrated to have alteration of Wnt-Bmp-Shh signaling and an abnormal number of incisors. Therefore, the LRP4 mutations found in our patients may disrupt Wnt-Bmp-Shh signaling, thereby resulting in dental anomalies and oral exostoses. Root maldevelopment in the patients suggests an important role of LRP4 in root morphogenesis.

7.
Eur J Orthod ; 45(3): 317-323, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-36374649

RESUMEN

BACKGROUND: Canonical and non-canonical WNT signaling are important for odontogenesis. WNT ligand secretion mediator (WLS; MIM611514) is required to transport lipid-modified WNT proteins from the Golgi to the cell membrane, where canonical and non-canonical WNT proteins are released into the extracellular milieu. Biallelic pathogenic variants in WLS are implicated in autosomal recessive Zaki syndrome (ZKS; MIM 619648), the only genetic condition known to be caused by pathogenic variants in WLS. OBJECTIVE: To investigate molecular etiology of dental anomalies in 250 patients with or without oral exostoses. PATIENTS AND METHODS: Clinical and radiographic examination, and whole exome sequencing, were performed in the case of 250 patients with dental anomalies with or without oral exostoses. RESULTS: Four extremely rare heterozygous missense variants (p.Ile20Thr, p.Met46Leu, p.Ser453Ile and p.Leu516Phe) in WLS were identified in 11 patients with dental anomalies. In five of these patients, a torus palatinus or a torus mandibularis was observed. CONCLUSION: We report for the first time the heterozygous WLS variants in patients with dental anomalies. Root maldevelopments in patients with WLS variants supports the role of canonical and non-canonical WNT signaling in root development. We also show that variants in WLS were implicated in torus palatinus and torus mandibularis. In addition, this is the first time that heterozygous carriers of WLS variants were found to manifest phenotypes. WLS variants were likely to have adverse effects on the concentration of WNT ligands delivered to the cell membrane, resulting in aberrant canonical and non-canonical WNT signaling, and subsequent phenotypes. LIMITATIONS OF THE STUDY: Patient's positioning during the acquisition of panoramic radiography might have affected the appearance of the tooth structures. If we had all family members of each patient to study co-segregation between genotype and phenotype, it would have strengthened the association of WLS variants and the phenotypes.


Asunto(s)
Exostosis , Diente , Humanos , Exostosis/patología , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Odontogénesis/genética , Mutación
8.
Biochem Biophys Res Commun ; 636(Pt 1): 147-154, 2022 12 25.
Artículo en Inglés | MEDLINE | ID: mdl-36332477

RESUMEN

Mucopolysaccharidosis type I Hurler syndrome (MPS IH) is a severe lysosomal storage disorder caused by alpha-l-iduronidase (IDUA) deficiency. Premature truncation mutations (PTC) are the most common (50%-70%) type of IDUA mutations and correlate with MPS IH. Nonsense suppression therapy is a therapeutic approach that aims to induce stop codon readthrough. The different ability of gentamicin to bind mutant mRNA in readthrough is determined by nucleotide sequence (PTC context: UGA > UAG > UAA) and inserted amino acid including the nucleotide position +4 of the PTC, as well as the mRNA secondary structure. We used COS-7 cells to investigate the functional characteristics of p.Q500X and p.R619X, IDUA variants and the effects of gentamicin in inducing stop codon readthrough of seven IDUA variants including p.Q500X, p.R619X, p.Q70X, p.E299X, p.W312X, p.Q380X, and p.W402X. Moreover, we performed prediction of RNA secondary structure using the online tool RNAfold. We found that cells treated with gentamicin showed significantly enhanced full-length IDUA expression and restored IDUA activity, in a dose-dependent manner, only in cells expressing cDNA with W312X, Q380X, W402X, and R619X. Among the readthrough-responsive variants, we observed UGA PTC in W312X, W402X and R619X; and UAG PTC with C at nucleotide +4 in Q380X. Changes of RNA secondary structure were noted only in mutants with readthrough-responsive variants including W312X, Q380X, W402X, and R619X. Additional preclinical studies of selected PTCs with potential readthrough, using drugs with less oto-nephrotoxicity, in patient's skin fibroblasts and animal model are necessary for the premise of personalized medicine.


Asunto(s)
Iduronidasa , Mucopolisacaridosis I , Chlorocebus aethiops , Animales , Iduronidasa/genética , Codón sin Sentido/genética , Gentamicinas/farmacología , Codón de Terminación/genética , Células COS , Mucopolisacaridosis I/tratamiento farmacológico , Mucopolisacaridosis I/genética , Mucopolisacaridosis I/metabolismo , Mutación , ARN Mensajero/metabolismo , Nucleótidos/uso terapéutico
9.
Clin Genet ; 102(4): 333-338, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35754005

RESUMEN

WNT/ß-catenin and BMP signaling pathways play important roles in the process of tooth development. Dysregulation of WNT/ß-catenin and BMP signaling is implicated in a number of human malformations, including dental anomalies. Whole exome and Sanger sequencing identified seven patients with LRP5 mutations (p.Asn1121Asp, p.Asp856Asn, p.Val1433Met, and p.Val1245Met) and six patients with BMP4 mutations (p.Asn150Lys, p.Gly168Arg, p.Arg269Gln, and p.Ala42Glu). All patients were affected with isolated dental anomalies (dental anomalies with no other structural defects), including mesiodens, tooth agenesis, unseparated roots, narrow roots, shortened and tapered roots, and taurodontism. Five patients with LRP5 and one with BMP4 mutations had oral exostoses. Protein models of LRP5 mutations indicate the possible functional effects of the mutations. Here we report for the first time that mutations in LRP5 are associated with dental anomalies. LRP5 appears to be the first gene related to pathogenesis of mesiodens. We also show for the first time that in addition to tooth agenesis, mutations in BMP4 are also implicated in root maldevelopment and torus mandibularis. Sharing of the phenotypes of the patients with LRP5 and BMP4 mutations, which include root maldevelopment, tooth agenesis, and torus mandibularis, implicates cross talks between the WNT/ß-catenin and BMP signaling pathways, especially during root development.


Asunto(s)
Anodoncia , Proteína Morfogenética Ósea 4 , Exostosis , Proteína-5 Relacionada con Receptor de Lipoproteína de Baja Densidad , Anomalías Dentarias , Anodoncia/genética , Proteína Morfogenética Ósea 4/genética , Exostosis/genética , Humanos , Proteína-5 Relacionada con Receptor de Lipoproteína de Baja Densidad/genética , Mutación , Anomalías Dentarias/genética , beta Catenina/genética
10.
Clin Genet ; 102(1): 66-71, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35352826

RESUMEN

Mutations in LTBP3 are associated with Dental Anomalies and Short Stature syndrome (DASS; MIM 601216), which is characterized by hypoplastic type amelogenesis imperfecta, hypodontia, underdeveloped maxilla, short stature, brachyolmia, aneurysm and dissection of the thoracic aorta. Here we report a novel (p.Arg545ProfsTer22) and a recurrent (c.3107-2A > G) LTBP3 variants, in a Turkish family affected with DASS. The proband, who carried compound heterozygous variant c.3107-2A > G, p.Arg545ProfsTer22, was most severely affected with DASS. The proband's father, who carried the heterozygous variant c.3107-2A > G had short stature and prognathic mandible. The mother and brother of the proband carried the heterozygous variant p.Arg545ProfsTer22, but only the mother showed any DASS characteristics. The c.3107-2A > G and the p.Arg545ProfsTer22 variants are expected to result in abnormal LTPB3 protein, failure of TGFß-LAP-LTBP3 complex formation, and subsequent disruption of TGFß secretion and activation. This is the first report of heterozygous carriers of LTBP3 variants showing phenotypes. The new findings of DASS found in this family include taurodontism, single-rooted molars, abnormal dentin, calcified dental pulp blood vessels, prognathic mandible, failure of mandibular tooth eruption, interatrial septal aneurysm, secundum atrial septal defect, tricuspid valve prolapse, and a recurrent glenohumeral joint dislocation.


Asunto(s)
Amelogénesis Imperfecta , Enanismo , Osteocondrodisplasias , Anomalías Dentarias , Amelogénesis Imperfecta/genética , Enanismo/genética , Humanos , Proteínas de Unión a TGF-beta Latente/genética , Masculino , Osteocondrodisplasias/genética , Fenotipo , Anomalías Dentarias/genética , Factor de Crecimiento Transformador beta/genética
11.
J Exp Bot ; 73(3): 784-800, 2022 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-34570888

RESUMEN

Glycoside hydrolase family1 ß-glucosidases play a variety of roles in plants, but their in planta functions are largely unknown in rice (Oryza sativa). In this study, the biological function of Os12BGlu38, a rice ß-glucosidase, expressed in bicellular to mature pollen, was examined. Genotype analysis of progeny of the self-fertilized heterozygous Os12BGlu38 T-DNA mutant, os12bglu38-1, found no homozygotes and a 1:1 ratio of wild type to heterozygotes. Reciprocal cross analysis demonstrated that Os12BGlu38 deficiency cannot be inherited through the male gamete. In cytological analysis, the mature mutant pollen appeared shrunken and empty. Histochemical staining and TEM showed that mutant pollen lacked intine cell wall, which was rescued by introduction of wild-type Os12BGlu38 genomic DNA. Metabolite profiling analysis revealed that cutin monomers and waxes, the components of the pollen exine layer, were increased in anthers carrying pollen of os12bglu38-1 compared with wild type and complemented lines. Os12BGlu38 fused with green fluorescent protein was localized to the plasma membrane in rice and tobacco. Recombinant Os12BGlu38 exhibited ß-glucosidase activity on the universal substrate p-nitrophenyl ß-d-glucoside and some oligosaccharides and glycosides. These findings provide evidence that function of a plasma membrane-associated ß-glucosidase is necessary for proper intine development.


Asunto(s)
Oryza , Pared Celular/metabolismo , Fertilidad , Regulación de la Expresión Génica de las Plantas , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polen/metabolismo , beta-Glucosidasa/genética , beta-Glucosidasa/metabolismo
12.
Biosci Biotechnol Biochem ; 86(2): 231-245, 2022 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-34965581

RESUMEN

Plants possess many glycoside hydrolase family 1 (GH1) ß-glucosidases, which physiologically function in cell wall metabolism and activation of bioactive substances, but most remain uncharacterized. One GH1 isoenzyme AtBGlu42 in Arabidopsis thaliana has been identified to hydrolyze scopolin using the gene deficient plants, but no enzymatic properties were obtained. Its sequence similarity to another functionally characterized enzyme Os1BGlu4 in rice suggests that AtBGlu42 also acts on oligosaccharides. Here, we show that the recombinant AtBGlu42 possesses high kcat/Km not only on scopolin, but also on various ß-glucosides, cellooligosaccharides, and laminarioligosaccharides. Of the cellooligosaccharides, cellotriose was the most preferred. The crystal structure, determined at 1.7 Å resolution, suggests that Arg342 gives unfavorable binding to cellooligosaccharides at subsite +3. The mutants R342Y and R342A showed the highest preference on cellotetraose or cellopentaose with increased affinities at subsite +3, indicating that the residues at this position have an important role for chain length specificity.


Asunto(s)
beta-Glucosidasa
13.
J Hum Genet ; 66(2): 193-203, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32884076

RESUMEN

Harboyan syndrome or corneal dystrophy and progressive deafness (MIM #217400) is characterized by congenital hereditary endothelial dystrophy (CHED) and progressive, sensorineural hearing loss. Mutations in SLC4A11 are responsible for this rare genetic syndrome. Eight patients from seven unrelated families affected with Harboyan Syndrome with mean follow-up of 12.0 ± 0.9 years were thoroughly investigated for the ocular, hearing, and kidney function abnormalities and the outcome of penetrating keratoplasty (PK). Mutation analysis of SLC4A11 was performed. All patients presented with bilateral cloudy corneas since birth. Sensorineural hearing loss was detected in all patients. Seven patients (11 eyes) underwent PK with the median age at surgery of 10.1 years (7.1-22.9). The overall corneal graft survival rate after primary PK was 72.7% (8/11 eyes). The mean graft survival time was 94.6 months (95% CI 83.1-126.0). All patients had unremarkable kidney function. The c.2264G>A (p.Arg755Gln) mutation in SCL4A11 was detected in most patients (87.5%). All unrelated Karen tribe patients had p.Arg755Gln mutation, suggestive of founder effect. We found the allele frequency of this variant in the Karen population to be 0.01. The c.2263C>T (p.Arg755Trp) mutation was found in one patient with mild phenotype and the novel truncating protein mutation c.2127delG (p.Gly710fsx*25) in SCL4A11 was identified in two Thai sisters. Visual outcome and graft survival after PK were satisfactory. Our study shows that all studied patients with SLC4A11 mutations had CHED and sensorineural hearing loss, and SLC4A11 mutations were not related to the onset and severity of hearing loss or outcome of keratoplasty.


Asunto(s)
Proteínas de Transporte de Anión/genética , Antiportadores/genética , Distrofias Hereditarias de la Córnea/genética , Distrofias Hereditarias de la Córnea/patología , Trasplante de Córnea/métodos , Pérdida Auditiva Sensorineural/genética , Pérdida Auditiva Sensorineural/patología , Mutación , Fenotipo , Adolescente , Adulto , Proteínas de Transporte de Anión/química , Antiportadores/química , Niño , Preescolar , Distrofias Hereditarias de la Córnea/cirugía , Femenino , Efecto Fundador , Pérdida Auditiva Sensorineural/cirugía , Humanos , Lactante , Masculino , Linaje , Conformación Proteica , Adulto Joven
14.
Arch Biochem Biophys ; 706: 108924, 2021 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-34019851

RESUMEN

Glycosynthases are glycoside hydrolase mutants that can synthesize oligosaccharides or glycosides from an inverted donor without hydrolysis of the products. Although glycosynthases have been characterized from a variety of glycoside hydrolase (GH) families, family GH116 glycosynthases have yet to be reported. We produced the Thermoanaerobacterium xylanolyticum TxGH116 nucleophile mutants E441D, E441G, E441Q and E441S and compared their glycosynthase activities to the previously generated E441A mutant. The TxGH116 E441G and E441S mutants exhibited highest glycosynthase activity to transfer glucose from α-fluoroglucoside (α-GlcF) to cellobiose acceptor, while E441D had low but significant activity as well. The E441G, E441S and E441A variants showed broad specificity for α-glycosyl fluoride donors and p-nitrophenyl glycoside acceptors. The structure of the TxGH116 E441A mutant with α-GlcF provided the donor substrate complex, while soaking of the TxGH116 E441G mutant with α-GlcF resulted in cellooligosaccharides extending from the +1 subsite out of the active site, with glycerol in the -1 subsite. Soaking of E441A or E441G with cellobiose or cellotriose gave similar acceptor substrate complexes with the nonreducing glucosyl residue in the +1 subsite. Combining structures with the ligands from the TxGH116 E441A with α-GlcF crystals with that of E441A or E441G with cellobiose provides a plausible structure of the catalytic ternary complex, which places the nonreducing glucosyl residue O4 2.5 Å from the anomeric carbon of α-GlcF, thereby explaining its apparent preference for production of ß-1,4-linked oligosaccharides. This functional and structural characterization provides the background for development of GH116 glycosynthases for synthesis of oligosaccharides and glycosides of interest.


Asunto(s)
Glicósido Hidrolasas/metabolismo , Glicósidos/biosíntesis , Ligasas/metabolismo , Oligosacáridos/biosíntesis , Thermoanaerobacterium/enzimología , Sustitución de Aminoácidos , Dominio Catalítico , Celobiosa/química , Celobiosa/metabolismo , Cristalografía por Rayos X , Glucosa/química , Glucosa/metabolismo , Glicósido Hidrolasas/química , Glicósidos/química , Ligasas/química , Modelos Moleculares , Mutación , Nitrofenoles/química , Nitrofenoles/metabolismo , Oligosacáridos/química , Unión Proteica , Conformación Proteica , Especificidad por Sustrato , Thermoanaerobacterium/química , Termodinámica
15.
Org Biomol Chem ; 19(26): 5867-5875, 2021 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-34124730

RESUMEN

Compared with normal cells, cancer cells usually exhibit an increase in glucose uptake as part of the Warburg effect. To take advantage of this hallmark of cancer, glucose transporters could be a good candidate for cancer targeting. Herein, we report novel glycoconjugate aza-BODIPY dyes (AZB-Glc and AZB-Glc-I) that contain two glucose moieties conjugated to near-infrared dyes via the azide-alkyne cycloaddition reaction. As anticipated, a higher level of AZB-Glc uptake was observed in breast cancer cells that overexpressed glucose transporters (GLUTs), especially GLUT-1, including the triple-negative breast cancer cell line (MDA-MB-231) and human breast adenocarcinoma cell line (MCF-7), compared to that of normal cells (human fetal lung fibroblasts, HFL1). The cellular uptake of AZB-Glc was in a dose- and time-dependent manner and also depended on GLUT, as evidenced by the decreased uptake of AZB-Glc in the presence of d-glucose or a glucose metabolism suppressor, combretastatin. In addition, light triggered cell death was also investigated through photodynamic therapy (PDT), since near-infrared (NIR) light is known to penetrate deeper tissue than light of shorter wavelengths. AZB-Glc-I, the analog of AZB-Glc containing iodine for enhanced singlet oxygen production upon NIR irradiation, was used for all treatment assays. AZB-Glc-I showed significant NIR light-induced cytotoxicity in cancer cells (IC50 = 1.4-1.6 µM under 1 min irradiation), which was about 20-times lower than that in normal cells (IC50 = 32 µM) under the same conditions, with negligible dark toxicity (IC50 > 100 µM) in all cell lines. Moreover, the singlet oxygen was detected inside the cancer cells after exposure to light in the presence of AZB-Glc-I. Therefore, our glucose conjugated systems proved to efficiently target cancer cells for enhanced photodynamic cancer therapy.


Asunto(s)
Fotoquimioterapia
16.
Mol Biol Rep ; 48(3): 2063-2070, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33677757

RESUMEN

Phenylketonuria (PKU) is an autosomal recessive amino acid metabolism disorder caused by variants in the gene encoding phenylalanine hydroxylase (PAH; EC1.14.16.1). This study aimed to assess the specific heterogeneity of PAH variants found in Thai population as well as evaluate enzyme activity and expression of novel variants. PAH gene from 13 patients was analyzed by PCR amplification and direct Sanger-sequencing of 13 exons of the coding region. The novel variants were transiently transfected in COS-7 cells for functional verification. Eleven different PAH variants were identified: all pathogenic variants were missense variants, of which the most frequent variant was p.R169L, accounting for 24% (6/25) of all identified alleles. Two novel variants p.R169L and p.Y317N and previously reported variants with mutated residues at the same positions (p.R169H and p.Y317H) were expressed in COS-7 cells. These showed mildly impaired residual activity levels (42.3-63.1% of wild type), while the protein levels were well expressed (82.8-110%), except for p.R169L, which showed decreased protein expression of 55.7% compared to the wild type enzyme. All subjects with p.R169L identified in at least one of pathogenic alleles (one case is homozygous) had a metabolic phenotype of mild hyperphenylalaninemia (HPA). Our data has expanded the information on the genetic heterogeneity of Thai patients with PAH deficiency. This finding emphasizes the importance of genotyping in patients with HPA, and in vitro studies can provide additional information for prediction of phenotype.


Asunto(s)
Variación Genética , Fenilalanina Hidroxilasa/genética , Fenilcetonurias/enzimología , Fenilcetonurias/genética , Animales , Células COS , Chlorocebus aethiops , Regulación Enzimológica de la Expresión Génica , Humanos , Mutación/genética , Fenotipo , Fenilalanina Hidroxilasa/química , Tailandia
17.
Int J Mol Sci ; 22(14)2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-34299210

RESUMEN

Conjugation of phytohormones with glucose is a means of modulating their activities, which can be rapidly reversed by the action of ß-glucosidases. Evaluation of previously characterized recombinant rice ß-glucosidases found that nearly all could hydrolyze abscisic acid glucose ester (ABA-GE). Os4BGlu12 and Os4BGlu13, which are known to act on other phytohormones, had the highest activity. We expressed Os4BGlu12, Os4BGlu13 and other members of a highly similar rice chromosome 4 gene cluster (Os4BGlu9, Os4BGlu10 and Os4BGlu11) in transgenic Arabidopsis. Extracts of transgenic lines expressing each of the five genes had higher ß-glucosidase activities on ABA-GE and gibberellin A4 glucose ester (GA4-GE). The ß-glucosidase expression lines exhibited longer root and shoot lengths than control plants in response to salt and drought stress. Fusions of each of these proteins with green fluorescent protein localized near the plasma membrane and in the apoplast in tobacco leaf epithelial cells. The action of these extracellular ß-glucosidases on multiple phytohormones suggests they may modulate the interactions between these phytohormones.


Asunto(s)
Ácido Abscísico/farmacología , Ésteres/química , Glucosa/metabolismo , Oryza/enzimología , Proteínas de Plantas/metabolismo , beta-Glucosidasa/metabolismo , Ácido Abscísico/química , Arabidopsis/efectos de los fármacos , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Sequías , Giberelinas/farmacología , Hidrólisis , Familia de Multigenes , Reguladores del Crecimiento de las Plantas/farmacología , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/efectos de los fármacos , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/metabolismo , Nicotiana/efectos de los fármacos , Nicotiana/crecimiento & desarrollo , Nicotiana/metabolismo , beta-Glucosidasa/genética
18.
Protein Expr Purif ; 175: 105708, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32738438

RESUMEN

Enzymes involved in ß-glucan breakdown in plants include endoglucanases, exoglucanases and ß-glucosidases. Glycoside hydrolase family 3 (GH3) exoglucanases from barley and maize and a few plant GH3 ß-glucosidases have been characterized, but none from rice. A few of these enzymes have been expressed in recombinant yeast and plant systems, but bacterial expression of plant GH3 enzymes has not been successful. We expressed the rice GH3 exoglucanase OsExo2 in Escherichia coli as a thioredoxin fusion protein, while other active plant GH3 enzymes could not be produced in this system. The protein was purified over 2000-fold in three chromatographic steps. The enzyme hydrolyzed ß-1,3- and ß-1,4-linked oligosaccharides and polysaccharides, consistent with a role in cell wall remodeling. Of the oligosaccharides tested, it had highest catalytic efficiency toward laminaritriose, (apparent kcat/Km = 37.7 mM-1s-1). Among polysaccharides, OsExoII hydrolyzed barley mixed ß-glucan and laminarin with similar efficiencies (apparent kcat/Km = 3.7 and 3.4 mL mg-1 s-1, respectively), but achieved its highest apparent kcat with lichenan (2.9 s-1). OsExoII was found to be stimulated by ethylene glycol, which increased the apparent kcat and decreased the Km and was transglycosylated. These results imply that E. coli expression may be successful for certain plant GH3 enzymes and OsExoII may be a useful enzyme for application to glycoside production.


Asunto(s)
Celulosa 1,4-beta-Celobiosidasa , Oryza/genética , Proteínas de Plantas , Proteínas Recombinantes de Fusión , Tiorredoxinas , Catálisis , Celulosa 1,4-beta-Celobiosidasa/biosíntesis , Celulosa 1,4-beta-Celobiosidasa/química , Celulosa 1,4-beta-Celobiosidasa/genética , Celulosa 1,4-beta-Celobiosidasa/aislamiento & purificación , Escherichia coli/genética , Escherichia coli/metabolismo , Oligosacáridos/química , Oryza/enzimología , Proteínas de Plantas/biosíntesis , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/aislamiento & purificación , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/aislamiento & purificación , Tiorredoxinas/biosíntesis , Tiorredoxinas/química , Tiorredoxinas/genética , Tiorredoxinas/aislamiento & purificación
19.
Prev Med ; 137: 106118, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32387297

RESUMEN

Despite relatively high medical expenditures, the United States performs poorly on population health indicators relative to many other countries. A key step in addressing this situation involves determining impactful and cost-effective interventions for at-risk populations. This requires an understanding of medical, social, behavioral health and safety domains of risk. Of immediate interest are those risks that are modifiable at the individual and family levels and could be reduced through intervention and broader care coordination efforts. Unfortunately, a comprehensive list of such risks does not exist in the published literature. Using multiple interrelated methods, including clinical, social, and care coordination experience, expert elaboration and validation, and reviews of existing assessments and literature, we present what we believe to be the most comprehensive listing of individually modifiable risk factors (IMRFs), relevant to care coordination, available for individuals aged 0-12 months. The list addresses IMRFs within four broad domains of risk (medical, social, behavioral health, and safety). Comprehensive risk registries such as the one presented here can enhance our collective efforts to identify and mitigate risks for specific populations. Such registries can also support research to build understandings of the impact of risks, individually and in interconnected signature combinations. The risk registry presented here and the enhanced understandings flowing from it may yield useful insights for clinicians, social service providers and researchers seeking a whole person approach to care, as well as for payers and policymakers seeking to enable health policy and payment reforms to improve population health.


Asunto(s)
Política de Salud , Sistema de Registros , Conducta de Reducción del Riesgo , Análisis Costo-Beneficio , Humanos , Lactante , Recién Nacido , Estados Unidos
20.
BMC Med Genet ; 20(1): 156, 2019 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-31510962

RESUMEN

BACKGROUND: Pompe disease is a lysosomal storage disorder caused by the deficiency of acid alpha-glucosidase (EC. 3.2.1.20) due to mutations in human GAA gene. The objective of the present study was to examine clinical and molecular characteristics of infantile-onset Pompe disease (IOPD) in Thailand. METHODS: Twelve patients with infantile-onset Pompe disease (IOPD) including 10 Thai and two other Asian ethnicities were enrolled. To examine the molecular characteristics of Pompe patients, GAA gene was analyzed by PCR amplification and direct Sanger-sequencing of 20 exons coding region. The novel mutations were transiently transfected in COS-7 cells for functional verification. The severity of the mutation was rated by study of the GAA enzyme activity detected in transfected cells and culture media, as well as the quantity and quality of the proper sized GAA protein demonstrated by western blot analysis. The GAA three dimensional structures were visualized by PyMol software tool. RESULTS: All patients had hypertrophic cardiomyopathy, generalized muscle weakness, and undetectable or < 1% of GAA normal activity. Three patients received enzyme replacement therapy with variable outcome depending on the age of the start of enzyme replacement therapy (ERT). Seventeen pathogenic mutations including four novel variants: c.876C > G (p.Tyr292X), c.1226insG (p.Asp409GlyfsX95), c.1538G > A (p.Asp513Gly), c.1895 T > G (p.Leu632Arg), and a previously reported rare allele of unknown significance: c.781G > A (p.Ala261Thr) were identified. The rating system ranked p.Tyr292X, p. Asp513Gly and p. Leu632Arg as class "B" and p. Ala261Thr as class "D" or "E". These novel mutations were located in the N-terminal beta-sheet domain and the catalytic domain. CONCLUSIONS: The present study provides useful information on the mutations of GAA gene in the underrepresented population of Asia which are more diverse than previously described and showing the hotspots in exons 14 and 5, accounting for 62% of mutant alleles. Almost all mutations identified are in class A/B. These data can benefit rapid molecular diagnosis of IOPD and severity rating of the mutations can serve as a partial substitute for cross reactive immunological material (CRIM) study.


Asunto(s)
Predisposición Genética a la Enfermedad/genética , Enfermedad del Almacenamiento de Glucógeno Tipo II/genética , Mutación , alfa-Glucosidasas/genética , Alelos , Animales , Pueblo Asiatico/genética , Secuencia de Bases , Células COS , Cardiomiopatía Hipertrófica/genética , Chlorocebus aethiops , Terapia de Reemplazo Enzimático , Femenino , Enfermedad del Almacenamiento de Glucógeno Tipo II/diagnóstico , Humanos , Lactante , Masculino , Modelos Moleculares , Patología Molecular , Análisis de Secuencia de Proteína , Tailandia , alfa-Glucosidasas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA