Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Virol ; 90(10): 4926-38, 2016 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-26937030

RESUMEN

UNLABELLED: Human cytomegalovirus (HCMV) is a major cause of morbidity and mortality in transplant patients and is the leading viral cause of birth defects after congenital infection. HCMV infection relies on the recognition of cell-specific receptors by one of the viral envelope glycoprotein complexes. Either the gH/gL/gO or the gH/gL/UL128/UL130/UL131A (Pentamer) complex has been found to fulfill this role, accounting for HCMV entry into almost all cell types. We have studied the UL116 gene product, a putative open reading frame identified by in silico analysis and predicted to code for a secreted protein. Virus infection experiments in mammalian cells demonstrated that UL116 is expressed late in the HCMV replication cycle and is a heavily glycosylated protein that first localizes to the cellular site of virus assembly and then inserts into the virion envelope. Transient-transfection studies revealed that UL116 is efficiently transported to the plasma membrane when coexpressed with gH and that gL competes with UL116 for gH binding. Further evidence for gH/UL116 complex formation was obtained by coimmunoprecipitation experiments on both transfected and infected cells and biochemical characterization of the purified complex. In summary, our results show that the product of the UL116 gene is an HCMV envelope glycoprotein that forms a novel gH-based complex alternative to gH/gL. Remarkably, the gH/UL116 complex is the first herpesvirus gH-based gL-less complex. IMPORTANCE: HCMV infection can cause severe disease in immunocompromised adults and infants infected in utero The dissection of the HCMV entry machinery is important to understand the mechanism of viral infection and to identify new vaccine antigens. The gH/gL/gO and gH/gL/UL128/UL130/UL131 (Pentamer) complexes play a key role in HCMV cell entry and tropism. Both complexes are formed by an invariant gH/gL scaffold on which the other subunits assemble. Here, we show that the UL116 gene product is expressed in infected cells and forms a heterodimer with gH. The gH/UL116 complex is carried on the infectious virions, although in smaller amounts than gH/gL complexes. No gH/UL116/gL ternary complex formed in transfected cells, suggesting that the gH/UL116 complex is independent from gL. This new gH-based gL-free complex represents a potential target for a protective HCMV vaccine and opens new perspectives on the comprehension of the HCMV cell entry mechanism and tropism.


Asunto(s)
Citomegalovirus/genética , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/metabolismo , Animales , Línea Celular , Citomegalovirus/química , Genoma Viral , Humanos , Microscopía Electrónica , Mutación , Multimerización de Proteína , Transfección , Proteínas del Envoltorio Viral/química , Ensamble de Virus , Internalización del Virus
2.
Immunol Cell Biol ; 94(9): 849-860, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27192938

RESUMEN

Human cytomegalovirus (HCMV) is known to exert suppressive effects on the host immune system through expression of various viral genes, thus directly and indirectly affecting antiviral immunity of the infected individuals. We report here that HCMV UL10 encodes a protein (pUL10) with immunosuppressive properties. UL10 has been classified as a member of the HCMV RL11 gene family. Although pUL10 is known to be dispensable for viral replication in cultured cells, its amino-acid sequence is well conserved among different HCMV isolates, suggesting that the protein has a crucial role in viral survival in the host environment. We show that pUL10 is cleaved from the cell surface of fibroblasts as well as epithelial cells and interacts with a cellular receptor ubiquitously expressed on the surface of human leukocytes, demonstrated by ex vivo cell-based assays and flow cytometric analyses on both lymphoid cell lines and primary blood cells. Furthermore, preincubation of peripheral blood mononuclear cells with purified pUL10 ectodomain results in significantly impaired proliferation and substantially reduced pro-inflammatory cytokine production, in particular in CD4+ T cells upon in vitro T-cell stimulation. The inhibitory effect of pUL10 is also observed on antigen receptor-mediated intracellular tyrosine phosphorylation in a T-cell line. Based on these observations, we suggest that pUL10 is a newly identified immunomodulatory protein encoded by HCMV. Further elucidation of interactions between pUL10 and the host immune system during HCMV may contribute to finding ways towards new therapies for HCMV infection.


Asunto(s)
Proteínas de la Cápside/metabolismo , Activación de Linfocitos/inmunología , Receptores de Antígenos de Linfocitos T/metabolismo , Linfocitos T/metabolismo , Secuencia de Aminoácidos , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD8-positivos/metabolismo , Proteínas de la Cápside/química , Línea Celular , Membrana Celular/metabolismo , Proliferación Celular , Citocinas/biosíntesis , Glicosilación , Células HEK293 , Humanos , Proteínas de la Membrana/metabolismo , Proteínas Recombinantes/metabolismo , Transducción de Señal
3.
Front Microbiol ; 13: 1106401, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36726564

RESUMEN

Human cytomegaloviruses (HCMVs) employ many different mechanisms to escape and subvert the host immune system, including expression of the viral IgG Fcγ receptors (vFcγRs) RL11 (gp34), RL12 (gp95), RL13 (gpRL13), and UL119 (gp68) gene products. The role of vFcγRs in HCMV pathogenesis has been reported to operate in infected cells by interfering with IgG-mediated effector functions. We found that gp34 and gp68 are envelope proteins that bind and internalize human IgGs on the surface of infected cells. Internalized IgGs are then transported on the envelope of viral particles in a vFcR-dependent mechanism. This mechanism is also responsible for the incorporation on the virions of the anti-gH neutralizing antibody MSL-109. Intriguingly, we show that gp68 is responsible for MSL-109 incorporation, but it is dispensable for other anti-HCMV antibodies that do not need this function to be transported on mature virions. HCMV-infected cells grown in presence of anti-HCMV monoclonal antibodies generate a viral progeny still infective and possible to be neutralized. This is the first example of a virus carrying neutralizing IgGs on its surface and their possible role is discussed.

4.
Nat Commun ; 6: 8176, 2015 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-26365435

RESUMEN

Human cytomegalovirus (HCMV) poses a significant threat to immunocompromised individuals and neonates infected in utero. Glycoprotein B (gB), the herpesvirus fusion protein, is a target for neutralizing antibodies and a vaccine candidate due to its indispensable role in infection. Here we show the crystal structure of the HCMV gB ectodomain bound to the Fab fragment of 1G2, a neutralizing human monoclonal antibody isolated from a seropositive subject. The gB/1G2 interaction is dominated by aromatic residues in the 1G2 heavy chain CDR3 protruding into a hydrophobic cleft in the gB antigenic domain 5 (AD-5). Structural analysis and comparison with HSV gB suggest the location of additional neutralizing antibody binding sites on HCMV gB. Finally, immunoprecipitation experiments reveal that 1G2 can bind to HCMV virion gB suggesting that its epitope is exposed and accessible on the virus surface. Our data will support the development of vaccines and therapeutic antibodies against HCMV infection.


Asunto(s)
Anticuerpos Neutralizantes/metabolismo , Anticuerpos Antivirales/metabolismo , Antígenos Virales/metabolismo , Fragmentos Fab de Inmunoglobulinas/metabolismo , Proteínas del Envoltorio Viral/metabolismo , Proteínas Virales de Fusión/metabolismo , Anticuerpos Neutralizantes/química , Anticuerpos Neutralizantes/ultraestructura , Anticuerpos Antivirales/química , Anticuerpos Antivirales/ultraestructura , Antígenos Virales/química , Antígenos Virales/ultraestructura , Cristalización , Cristalografía por Rayos X , Citomegalovirus/inmunología , Humanos , Fragmentos Fab de Inmunoglobulinas/química , Fragmentos Fab de Inmunoglobulinas/ultraestructura , Inmunoprecipitación , Microscopía Electrónica , Mutagénesis Sitio-Dirigida , Conformación Proteica , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/ultraestructura , Proteínas Virales de Fusión/química , Proteínas Virales de Fusión/ultraestructura
5.
PLoS One ; 7(11): e50166, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23226246

RESUMEN

The human cytomegalovirus (HCMV) protein RL13 has recently been described to be present in all primary isolates but rapidly mutated in culture adapted viruses. Although these data suggest a crucial role for this gene product in HCMV primary infection, no function has so far been assigned to this protein. Working with RL13 expressed in isolation in transfected human epithelial cells, we demonstrated that recombinant RL13 from the clinical HCMV isolates TR and Merlin have selective human immunoglobulin (Ig)-binding properties towards IgG1 and IgG2 subtypes. An additional Fc binding protein, RL12, was also identified as an IgG1 and IgG2 binding protein but not further characterized. The glycoprotein RL13 trafficked to the plasma membrane where it bound and internalized exogenous IgG or its constant fragment (Fcγ). Analysis of RL13 ectodomain mutants suggested that the RL13 Ig-like domain is responsible for the Fc binding activity. Ligand-dependent internalization relied on a YxxL endocytic motif located in the C-terminal tail of RL13. Additionally, we showed that the tyrosine residue could be replaced by phenylalanine but not by alanine, indicating that the internalization signal was independent from phosphorylation events. In sum, RL13 binds human IgG and may contribute to HCMV immune evasion in the infected host, but this function does not readily explain the instability of the RL13 gene during viral propagation in cultured cells.


Asunto(s)
Membrana Celular/metabolismo , Membrana Celular/virología , Citomegalovirus/metabolismo , Fragmentos Fc de Inmunoglobulinas/metabolismo , Virus Reordenados/metabolismo , Secuencia de Aminoácidos , Línea Celular , Membrana Celular/inmunología , Citomegalovirus/inmunología , Humanos , Evasión Inmune , Fragmentos Fc de Inmunoglobulinas/inmunología , Inmunoglobulina G/inmunología , Inmunoglobulina G/metabolismo , Imitación Molecular , Datos de Secuencia Molecular , Plásmidos , Unión Proteica , Estructura Terciaria de Proteína , Transporte de Proteínas , Virus Reordenados/inmunología , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Transfección , Proteínas Virales/inmunología , Proteínas Virales/metabolismo
6.
AJR Am J Roentgenol ; 181(1): 253-60, 2003 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-12818869

RESUMEN

OBJECTIVE: The purpose of our study was to evaluate the effectiveness of intraarterial infusion of paclitaxel incorporated into human albumin nanoparticles for use as induction chemotherapy before definitive treatment of advanced squamous cell carcinoma of the tongue. SUBJECTS AND METHODS: Twenty-three previously untreated patients (age range, 27-75 years) who had carcinoma of the tongue (stage T3-T4, any N) received intraarterial therapy with paclitaxel incorporated into albumin nanoparticles delivered by transfemoral catheterization into the external carotid artery (10 patients), selectively into the lingual artery (12 patients), or into a faciolingual trunk (1 patient). Each patient received two to four infusions, with a 3-week interval between infusions. The dose administered was 230 mg/m(2) in eight patients, 180 mg/m(2) in six patients, and 150 mg/m(2) in nine patients. Sixteen patients underwent surgery. Of these 16 patients, eight subsequently received radiotherapy, and three received a combination of chemotherapy and radiotherapy. Of the remaining seven patients, one received chemotherapy alone, four received radiotherapy alone, one received chemotherapy plus radiotherapy, and one refused any further treatment. RESULTS: Sixty-seven infusions were performed successfully. Eighteen patients (78%) had a clinical and radiologic objective response (complete, 26%; partial, 52%). Three patients (13%) showed stable disease, and two (9%) showed disease progression. The four patients with complete clinical response who underwent surgery showed microscopic residual carcinoma measuring less than 1 mm in two patients, less than 5 mm in one patient, and less than 1 cm in one patient. The toxicities encountered were hematologic (grade 3) in two patients (8.6%) and neurologic (grade 4) in two patients (reversible paralysis of the facial nerve, 8.6%). Two catheter-related complications occurred: one reversible brachiofacial paralysis and one asymptomatic occlusion of the external carotid artery. CONCLUSION: Intraarterial infusion of paclitaxel in albumin nanoparticles proved reproducible and effective and deserves further investigation as induction chemotherapy before definitive treatment of advanced tumors of the tongue, with a view to organ preservation.


Asunto(s)
Antineoplásicos Fitogénicos/administración & dosificación , Carcinoma de Células Escamosas/tratamiento farmacológico , Infusiones Intraarteriales , Paclitaxel/administración & dosificación , Neoplasias de la Lengua/tratamiento farmacológico , Antineoplásicos Fitogénicos/uso terapéutico , Sistemas de Liberación de Medicamentos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Paclitaxel/uso terapéutico , Tamaño de la Partícula , Albúmina Sérica/administración & dosificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA