Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Cell Proteomics ; 22(8): 100606, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37356495

RESUMEN

Osteoarthritis (OA) is the most prevalent rheumatic pathology. However, OA is not simply a process of wear and tear affecting articular cartilage but rather a disease of the entire joint. One of the most common locations of OA is the knee. Knee tissues have been studied using molecular strategies, generating a large amount of complex data. As one of the goals of the Rheumatic and Autoimmune Diseases initiative of the Human Proteome Project, we applied a text-mining strategy to publicly available literature to collect relevant information and generate a systematically organized overview of the proteins most closely related to the different knee components. To this end, the PubPular literature-mining software was employed to identify protein-topic relationships and extract the most frequently cited proteins associated with the different knee joint components and OA. The text-mining approach searched over eight million articles in PubMed up to November 2022. Proteins associated with the six most representative knee components (articular cartilage, subchondral bone, synovial membrane, synovial fluid, meniscus, and cruciate ligament) were retrieved and ranked by their relevance to the tissue and OA. Gene ontology analyses showed the biological functions of these proteins. This study provided a systematic and prioritized description of knee-component proteins most frequently cited as associated with OA. The study also explored the relationship of these proteins to OA and identified the processes most relevant to proper knee function and OA pathophysiology.


Asunto(s)
Cartílago Articular , Osteoartritis de la Rodilla , Humanos , Cartílago Articular/metabolismo , Articulación de la Rodilla/metabolismo , Articulación de la Rodilla/patología , Osteoartritis de la Rodilla/metabolismo
2.
Ann Rheum Dis ; 83(5): 661-668, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38182405

RESUMEN

OBJECTIVE: Early diagnosis of knee osteoarthritis (KOA) in asymptomatic stages is essential for the timely management of patients using preventative strategies. We develop and validate a prognostic model useful for predicting the incidence of radiographic KOA (rKOA) in non-radiographic osteoarthritic subjects and stratify individuals at high risk of developing the disease. METHODS: Subjects without radiographic signs of KOA according to the Kellgren and Lawrence (KL) classification scale (KL=0 in both knees) were enrolled in the OA initiative (OAI) cohort and the Prospective Cohort of A Coruña (PROCOAC). Prognostic models were developed to predict rKOA incidence during a 96-month follow-up period among OAI participants based on clinical variables and serum levels of the candidate protein biomarkers APOA1, APOA4, ZA2G and A2AP. The predictive capability of the biomarkers was assessed based on area under the curve (AUC), and internal validation was performed to correct for overfitting. A nomogram was plotted based on the regression parameters. Model performance was externally validated in the PROCOAC. RESULTS: 282 participants from the OAI were included in the development dataset. The model built with demographic, anthropometric and clinical data (age, sex, body mass index and WOMAC pain score) showed an AUC=0.702 for predicting rKOA incidence during the follow-up. The inclusion of ZA2G, A2AP and APOA1 data significantly improved the model's sensitivity and predictive performance (AUC=0.831). The simplest model, including only clinical covariates and ZA2G and A2AP serum levels, achieved an AUC=0.826. Both models were internally cross-validated. Predictive performance was externally validated in an independent dataset of 100 individuals from the PROCOAC (AUC=0.713). CONCLUSION: A novel prognostic model based on common clinical variables and protein biomarkers was developed and externally validated to predict rKOA incidence over a 96-month period in individuals without any radiographic signs of disease. The resulting nomogram is a useful tool for stratifying high-risk populations and could potentially lead to personalised medicine strategies for treating OA.


Asunto(s)
Osteoartritis de la Rodilla , Humanos , Osteoartritis de la Rodilla/diagnóstico por imagen , Osteoartritis de la Rodilla/epidemiología , Pronóstico , Estudios Prospectivos , Incidencia , Articulación de la Rodilla , Biomarcadores , Progresión de la Enfermedad
3.
Ann Rheum Dis ; 82(7): 974-984, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37024296

RESUMEN

OBJECTIVES: To identify mitochondrial DNA (mtDNA) genetic variants associated with the risk of rapid progression of knee osteoarthritis (OA) and to characterise their functional significance using a cellular model of transmitochondrial cybrids. METHODS: Three prospective cohorts contributed participants. The osteoarthritis initiative (OAI) included 1095 subjects, the Cohort Hip and Cohort Knee included 373 and 326 came from the PROspective Cohort of Osteoarthritis from A Coruña. mtDNA variants were screened in an initial subset of 450 subjects from the OAI by in-depth sequencing of mtDNA. A meta-analysis of the three cohorts was performed. A model of cybrids was constructed to study the functional consequences of harbouring the risk mtDNA variant by assessing: mtDNA copy number, mitochondrial biosynthesis, mitochondrial fission and fusion, mitochondrial reactive oxygen species (ROS), oxidative stress, autophagy and a whole transcriptome analysis by RNA-sequencing. RESULTS: mtDNA variant m.16519C is over-represented in rapid progressors (combined OR 1.546; 95% CI 1.163 to 2.054; p=0.0027). Cybrids with this variant show increased mtDNA copy number and decreased mitochondrial biosynthesis; they produce higher amounts of mitochondrial ROS, are less resistant to oxidative stress, show a lower expression of the mitochondrial fission-related gene fission mitochondrial 1 and an impairment of autophagic flux. In addition, its presence modulates the transcriptome of cybrids, especially in terms of inflammation, where interleukin 6 emerges as one of the most differentially expressed genes. CONCLUSIONS: The presence of the mtDNA variant m.16519C increases the risk of rapid progression of knee OA. Among the most modulated biological processes associated with this variant, inflammation and negative regulation of cellular process stand out. The design of therapies based on the maintenance of mitochondrial function is recommended.


Asunto(s)
ADN Mitocondrial , Osteoartritis de la Rodilla , Humanos , ADN Mitocondrial/genética , Osteoartritis de la Rodilla/genética , Especies Reactivas de Oxígeno , Estudios Prospectivos , Mitocondrias/genética , Inflamación/metabolismo
4.
Mol Cell Proteomics ; 19(4): 574-588, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31980557

RESUMEN

In osteoarthritis (OA), impairment of cartilage regeneration can be related to a defective chondrogenic differentiation of mesenchymal stromal cells (MSCs). Therefore, understanding the proteomic- and metabolomic-associated molecular events during the chondrogenesis of MSCs could provide alternative targets for therapeutic intervention. Here, a SILAC-based proteomic analysis identified 43 proteins related with metabolic pathways whose abundance was significantly altered during the chondrogenesis of OA human bone marrow MSCs (hBMSCs). Then, the level and distribution of metabolites was analyzed in these cells and healthy controls by matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI), leading to the recognition of characteristic metabolomic profiles at the early stages of differentiation. Finally, integrative pathway analysis showed that UDP-glucuronic acid synthesis and amino sugar metabolism were downregulated in OA hBMSCs during chondrogenesis compared with healthy cells. Alterations in these metabolic pathways may disturb the production of hyaluronic acid (HA) and other relevant cartilage extracellular matrix (ECM) components. This work provides a novel integrative insight into the molecular alterations of osteoarthritic MSCs and potential therapeutic targets for OA drug development through the enhancement of chondrogenesis.


Asunto(s)
Redes y Vías Metabólicas , Terapia Molecular Dirigida , Osteoartritis/tratamiento farmacológico , Osteoartritis/metabolismo , Estudios de Casos y Controles , Condrogénesis , Humanos , Células Madre Mesenquimatosas/metabolismo , Metaboloma , Vía de Pentosa Fosfato , Uridina Difosfato Ácido Glucurónico/biosíntesis
5.
Mol Cell Proteomics ; 18(10): 2018-2028, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31352363

RESUMEN

Osteoarthritis (OA) is a pathology characterized by the loss of articular cartilage. In this study, we performed a peptidomic strategy to identify endogenous peptides (neopeptides) that are released from human osteoarthritic tissue, which may serve as disease markers. With this aim, secretomes of osteoarthritic and healthy articular cartilages obtained from knee and hip were analyzed by shotgun peptidomics. This discovery step led to the identification of 1175 different peptides, corresponding to 101 proteins, as products of the physiological or pathological turnover of cartilage extracellular matrix. Then, a targeted multiple reaction monitoring-mass spectrometry method was developed to quantify the panel of best marker candidates on a larger set of samples (n = 62). Statistical analyses were performed to evaluate the significance of the observed differences and the ability of the neopeptides to classify the tissue. Eight of them were differentially abundant in the media from wounded zones of OA cartilage compared with the healthy tissue (p < 0.05). Three neopeptides belonging to Clusterin and one from Cartilage Oligomeric Matrix Protein showed a disease-dependent decrease specifically in hip OA, whereas two from Prolargin (PRELP) and one from Cartilage Intermediate Layer Protein 1 were significantly increased in samples from knee OA. The release of one peptide from PRELP showed the best metrics for tissue classification (AUC = 0.834). The present study reveals specific neopeptides that are differentially released from knee or hip human osteoarthritic cartilage compared with healthy tissue. This evidences the intervention of characteristic pathogenic pathways in OA and provides a novel panel of peptidic candidates for biomarker development.


Asunto(s)
Biomarcadores/metabolismo , Cartílago Articular/citología , Osteoartritis de la Cadera/metabolismo , Osteoartritis de la Rodilla/metabolismo , Péptidos/metabolismo , Proteómica/métodos , Anciano , Anciano de 80 o más Años , Cartílago Articular/metabolismo , Cartílago Articular/patología , Estudios de Casos y Controles , Células Cultivadas , Cromatografía Liquida , Medios de Cultivo Condicionados/química , Matriz Extracelular/metabolismo , Femenino , Humanos , Masculino , Especificidad de Órganos , Osteoartritis de la Cadera/patología , Osteoartritis de la Rodilla/patología , Espectrometría de Masas en Tándem
6.
Int J Mol Sci ; 22(12)2021 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-34208590

RESUMEN

Osteoarthritis (OA) is the most common musculoskeletal disorder causing a great disability and a reduction in the quality of life. In OA, articular chondrocytes (AC) and synovial fibroblasts (SF) release innate-derived immune mediators that initiate and perpetuate inflammation, inducing cartilage extracellular matrix (ECM) degradation. Given the lack of therapies for the treatment of OA, in this study, we explore biomarkers that enable the development of new therapeutical approaches. We analyze the set of secreted proteins in AC and SF co-cultures by stable isotope labeling with amino acids (SILAC). We describe, for the first time, 115 proteins detected in SF-AC co-cultures stimulated by fibronectin fragments (Fn-fs). We also study the role of the vasoactive intestinal peptide (VIP) in this secretome, providing new proteins involved in the main events of OA, confirmed by ELISA and multiplex analyses. VIP decreases proteins involved in the inflammatory process (CHI3L1, PTX3), complement activation (C1r, C3), and cartilage ECM degradation (DCN, CTSB and MMP2), key events in the initiation and progression of OA. Our results support the anti-inflammatory and anti-catabolic properties of VIP in rheumatic diseases and provide potential new targets for OA treatment.


Asunto(s)
Condrocitos/metabolismo , Fibroblastos/metabolismo , Osteoartritis/metabolismo , Proteoma , Proteómica , Membrana Sinovial/citología , Péptido Intestinal Vasoactivo/metabolismo , Biomarcadores , Condrocitos/efectos de los fármacos , Técnicas de Cocultivo , Citocinas/metabolismo , Susceptibilidad a Enfermedades , Matriz Extracelular/metabolismo , Fibroblastos/efectos de los fármacos , Humanos , Mediadores de Inflamación/metabolismo , Osteoartritis/etiología , Osteoartritis/patología , Proteómica/métodos , Péptido Intestinal Vasoactivo/farmacología
7.
J Proteome Res ; 18(3): 1043-1053, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30585730

RESUMEN

Endometrial cancer (EC) is the most frequent gynecological cancer. Tumor dissemination affecting ∼20% of EC patients is characterized at the primary carcinoma by epithelial-to-mesenchymal transition (EMT) associated with myometrial infiltration. At distant sites, the interaction of circulating tumor cells (CTCs) with the microenvironment is crucial for metastatic colonization, with a participation of the extracellular vesicles (EVs). We comprehensively approached these primary and secondary sites to study the impact of tumor EVs on the metastatic efficiency of CTCs in EC. Tumor EVs in circulation reproduce the epithelial phenotype predominant in the primary carcinoma, whereas CTCs are characterized by an EMT phenotype. We modeled this EMT-related clinical scenario in the Hec1A endometrial cell line and characterized the epithelial-like EVs in circulation by SILAC proteome analysis. The identification of proteins involved in cell-cell and cell-matrix interaction and binding, together with in vitro evidence of an improved adhesion of CTC to a functionalized endothelium, suggests a contribution of the epithelial-like EVs in the homing of CTCs at metastatic sites. Accordingly, adhesion protein LGALS3BP was found to be significantly enriched in circulating EVs from a cohort of EC patients with a high risk of recurrence by targeted proteomics (multiple reaction monitoring), highlighting its potential in liquid biopsy in EC.


Asunto(s)
Antígenos de Neoplasias/genética , Biomarcadores de Tumor/genética , Neoplasias Endometriales/genética , Proteoma/genética , Proteómica , Adulto , Anciano , Anciano de 80 o más Años , Antígenos de Neoplasias/sangre , Biomarcadores de Tumor/sangre , Neoplasias Endometriales/sangre , Neoplasias Endometriales/patología , Transición Epitelial-Mesenquimal/genética , Vesículas Extracelulares/genética , Vesículas Extracelulares/patología , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Marcaje Isotópico , Persona de Mediana Edad , Células Neoplásicas Circulantes/metabolismo , Células Neoplásicas Circulantes/patología , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Microambiente Tumoral/genética
8.
J Proteome Res ; 16(8): 2773-2788, 2017 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-28675930

RESUMEN

Carcinoma, the most common type of cancer, arises from epithelial cells. The transition from adenoma to carcinoma is associated with the loss of E-cadherin and, in consequence, the disruption of cell-cell contacts. E-cadherin is a tumor suppressor, and it is down-regulated during epithelial-to-mesenchymal transition (EMT); indeed, its loss is a predictor of poor prognosis. Hakai is an E3 ubiquitin-ligase protein that mediates E-cadherin ubiquitination, endocytosis and finally degradation, leading the alterations of cell-cell contacts. Although E-cadherin is the most established substrate for Hakai activity, other regulated molecular targets for Hakai may be involved in cancer cell plasticity during tumor progression. In this work we employed an iTRAQ approach to explore novel molecular pathways involved in Hakai-driven EMT during tumor progression. Our results show that Hakai may have an important influence on cytoskeleton-related proteins, extracellular exosome-associated proteins, RNA-related proteins and proteins involved in metabolism. Moreover, a profound decreased expression in several proteasome subunits during Hakai-driven EMT was highlighted. Since proteasome inhibitors are becoming increasingly used in cancer treatment, our findings suggest that the E3 ubiquitin-ligase, such as Hakai, may be a better target than proteasome for using novel specific inhibitors in tumor subtypes that follow EMT.


Asunto(s)
Citoesqueleto/metabolismo , Complejo de la Endopetidasa Proteasomal/fisiología , Proteómica/métodos , Ubiquitina-Proteína Ligasas/análisis , Animales , Antineoplásicos/química , Cadherinas/metabolismo , Adhesión Celular , Perros , Transición Epitelial-Mesenquimal , Humanos , Células de Riñón Canino Madin Darby , Terapia Molecular Dirigida/métodos , Complejo de la Endopetidasa Proteasomal/química
9.
Expert Rev Proteomics ; 12(4): 433-43, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26152498

RESUMEN

Osteoarthritis is the most common rheumatic pathology and one of the leading causes of disability worldwide. It is a very complex disease whose etiopathogenesis is not fully understood. Furthermore, there are serious limitations for its management, since it lacks specific and sensitive biomarkers for early diagnosis, prognosis and therapeutic monitoring. Proteomic approaches performed in the last few decades have contributed to the knowledge on the molecular mechanisms that participate in this pathology and they have also led to interesting panels of putative biomarker candidates. In the next few years, further efforts should be made for translating these findings into the clinical routines. It is expected that targeted proteomics strategies will be highly valuable for the verification and qualification of biomarkers of osteoarthritis.


Asunto(s)
Biomarcadores/metabolismo , Osteoartritis/metabolismo , Proteómica , Humanos , Osteoartritis/diagnóstico , Osteoartritis/fisiopatología , Pronóstico
10.
J Proteome Res ; 13(12): 6096-106, 2014 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-25383958

RESUMEN

Osteoarthritis (OA) is the most common rheumatic pathology and is characterized primarily by articular cartilage degradation. Despite its high prevalence, there is no effective therapy to slow disease progression or regenerate the damaged tissue. Therefore, new diagnostic and monitoring tests for OA are urgently needed, which would also promote the development of alternative therapeutic strategies. In the present study, we have performed an iTRAQ-based quantitative proteomic analysis of secretomes from healthy human articular cartilage explants, comparing their protein profile to those from unwounded (early disease) and wounded (advanced disease) zones of osteoarthritic tissue. This strategy allowed us to identify a panel of 76 proteins that are distinctively released by the diseased tissue. Clustering analysis allowed the classification of proteins according to their different profile of release from cartilage. Among these proteins, the altered release of osteoprotegerin (decreased in OA) and periostin (increased in OA), both involved in bone remodelling processes, was verified in further analyses. Moreover, periostin was also increased in the synovial fluid of OA patients. Altogether, the present work provides a novel insight into the mechanisms of human cartilage degradation and a number of new cartilage-characteristic proteins with possible biomarker value for early diagnosis and prognosis of OA.


Asunto(s)
Cartílago Articular/metabolismo , Osteoartritis/metabolismo , Proteoma/metabolismo , Proteómica/métodos , Anciano , Anciano de 80 o más Años , Biomarcadores/metabolismo , Western Blotting , Cartílago Articular/patología , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Cromatografía Liquida , Femenino , Humanos , Masculino , Persona de Mediana Edad , Análisis Multivariante , Osteoartritis/diagnóstico , Osteoartritis/genética , Osteoprotegerina/genética , Osteoprotegerina/metabolismo , Proteoma/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal , Líquido Sinovial/metabolismo , Espectrometría de Masas en Tándem , Técnicas de Cultivo de Tejidos
11.
J Proteome Res ; 13(2): 1045-54, 2014 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-24400832

RESUMEN

Human mesenchymal stem cells (hMSCs) can be triggered to differentiate toward chondrocytes and thus harbor great therapeutic potential for the repair of cartilage defects in osteoarthritis (OA) and other articular diseases. However, the molecular mechanisms underlying the chondrogenesis process are still in part unknown. In this work, we followed a double-stable isotope labeling by amino acids in cell culture (SILAC) strategy to evaluate the quantitative modulation of the secretome of stem cells isolated from bone marrow (hBMSCs) during the first steps of their chondrogenic differentiation. Analysis by LC-ESI-MS/MS led to the identification of 221 proteins with a reported extracellular localization. Most of them were characteristic of cartilage extracellular matrix, and 34 showed statistically significant quantitative alterations during chondrogenesis. These include, among others, cartilage markers such as Proteoglycan 4 or COMP, anticatabolic markers (TIMP1), reported markers of cartilage development (Versican), and a suggested marker of chondrogenesis, CRAC1. Altogether, our work demonstrates the usefulness of secretome analysis for understanding the mechanisms responsible for cartilage matrix formation, and it reports a panel of extracellular markers potentially useful for the evaluation of tissue development in cell therapy- or tissue engineering-based approaches for cartilage repair.


Asunto(s)
Diferenciación Celular , Condrocitos/citología , Células Madre Mesenquimatosas/metabolismo , Western Blotting , Células Cultivadas , Cromatografía Liquida , Electroforesis en Gel de Poliacrilamida , Humanos , Células Madre Mesenquimatosas/citología , Proteínas/química , Proteínas/metabolismo , Espectrometría de Masa por Ionización de Electrospray
12.
Mol Cell Proteomics ; 11(2): M111.010496, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22008206

RESUMEN

Umbilical cord stroma mesenchymal stem cells were differentiated toward chondrocyte-like cells using a new in vitro model that consists of the random formation of spheroids in a medium supplemented with fetal bovine serum on a nonadherent surface. The medium was changed after 2 days to one specific for the induction of chondrocyte differentiation. We assessed this model using reverse transcriptase-polymerase chain reaction, flow cytometry, immunohistochemistry, and secretome analyses. The purpose of this study was to determine which proteins were differentially expressed during chondrogenesis. Differential gel electrophoresis analysis was performed, followed by matrix-assisted laser desorption/ionization mass spectrometry protein identification. A total of 97 spots were modulated during the chondrogenesis process, 54 of these spots were identified as 39 different proteins and 15 were isoforms. Of the 39 different proteins identified 15 were down-regulated, 21 were up-regulated, and 3 were up- and down-regulated during the chondrogenesis process. Using Pathway Studio 7.0 software, our results showed that the major cell functions modulated during chondrogenesis were cellular differentiation, proliferation, and migration. Five proteins involved in cartilage extracellular matrix metabolism found during the differential gel electrophoresis study were confirmed using Western blot. The results indicate that our in vitro chondrogenesis model is an efficient and rapid technique for obtaining cells similar to chondrocytes that express proteins characteristic of the cartilage extracellular matrix. These chondrocyte-like cells could prove useful for future cell therapy treatment of cartilage pathologies.


Asunto(s)
Diferenciación Celular , Condrogénesis/fisiología , Células Madre Mesenquimatosas/metabolismo , Modelos Biológicos , Proteoma/análisis , Células del Estroma/metabolismo , Cordón Umbilical/metabolismo , Adulto , Biomarcadores/metabolismo , Western Blotting , Células Cultivadas , Condrocitos , Electroforesis en Gel Bidimensional , Citometría de Flujo , Humanos , Técnicas para Inmunoenzimas , Células Madre Mesenquimatosas/citología , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Células del Estroma/citología , Cordón Umbilical/citología
13.
Mol Cell Proteomics ; 11(6): M111.013417, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22203690

RESUMEN

Chondroitin sulfate (CS) is a symptomatic slow acting drug for osteoarthritis (OA) widely used for the treatment of this highly prevalent disease, characterized by articular cartilage degradation. However, little is known about its mechanism of action, and recent large scale clinical trials have reported variable results on OA symptoms. Herein, we aimed to study the modulations in the intracellular proteome and the secretome of human articular cartilage cells (chondrocytes) treated with three different CS compounds, with different origin or purity, by two complementary proteomic approaches. Osteoarthritic cells were treated with 200 µg/ml of each brand of CS. Quantitative proteomics experiments were carried out by the DIGE and stable isotope labeling with amino acids in cell culture (SILAC) techniques, followed by LC-MALDI-MS/MS analysis. The DIGE study, carried out on chondrocyte whole cell extracts, led to the detection of 46 spots that were differential between conditions in our study: 27 were modulated by CS1, 4 were modulated by CS2, and 15 were modulated by CS3. The SILAC experiment, carried out on the subset of chondrocyte-secreted proteins, allowed us to identify 104 different proteins. Most of them were extracellular matrix components, and 21 were modulated by CS1, 13 were modulated by CS2, and 9 were modulated by CS3. Each of the studied compounds induces a characteristic protein profile in OA chondrocytes. CS1 displayed the widest effect but increased the mitochondrial superoxide dismutase, the cartilage oligomeric matrix protein, and some catabolic or inflammatory factors like interstitial collagenase, stromelysin-1, and pentraxin-related protein. CS2 and CS3, on the other hand, increased a number of structural proteins, growth factors, and extracellular matrix proteins. Our study shows how, from the three CS compounds tested, CS1 induces the activation of inflammatory and catabolic pathways, whereas CS2 and CS3 induce an anti-inflammatory and anabolic response. The data presented emphasize the importance of employing high quality CS compounds, supported by controlled clinical trials, in the therapy of OA. Finally, the present work exemplifies the usefulness of proteomic approaches in pharmacological studies.


Asunto(s)
Condrocitos/efectos de los fármacos , Condrocitos/metabolismo , Sulfatos de Condroitina/farmacología , Proteoma/metabolismo , Secuencia de Aminoácidos , Extractos Celulares/química , Células Cultivadas , Proteínas de la Matriz Extracelular/metabolismo , Humanos , Líquido Intracelular/metabolismo , Datos de Secuencia Molecular , Osteoartritis/metabolismo , Osteoartritis/patología , Fragmentos de Péptidos/química , Proteómica , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Electroforesis Bidimensional Diferencial en Gel
14.
J Proteome Res ; 11(11): 5350-61, 2012 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-22989065

RESUMEN

Human mesenchymal stem cells (hMSCs), residing in bone marrow as well as in the synovial lining of joints, can be triggered to differentiate toward chondrocytes. Thus, hMSCs harbor great therapeutic potential for the repair of cartilage defects in osteoarthritis (OA) and other articular diseases. However, the molecular mechanisms underlying the chondrogenesis process are still in part unknown. In this work, we applied for the first time the stable isotope labeling by amino acids in cell culture (SILAC) technique for the quantitative analysis of protein modulation during the chondrogenic differentiation process of hMSCs. First, we have standardized the metabolic labeling procedure on MSCs isolated from bone marrow (hBMSCs), and we have assessed the quality of chondrogenesis taking place in these conditions. Then, chondrogenic differentiation was induced on these labeled cells, and a quantitative proteomics approach has been followed to evaluate protein changes between two differentiation days. With this strategy, we could identify 622 different proteins by LC-MALDI-TOF/TOF analysis and find 65 proteins whose abundance was significantly modulated between day 2 and day 14 of chondrogenesis. Immunohistochemistry analyses were performed to verify the changes on a panel of six proteins that play different biological roles in the cell: fibronectin, gelsolin, vimentin, alpha-ATPase, mitochondrial superoxide dismutase, and cyclophilin A. All of these proteins were increased at day 14 compared to day 2 of chondrogenic induction, thus being markers of the enhanced extracellular matrix synthesis, cell adhesion, metabolism, and response to stress processes that take place in the early steps of chondrogenesis. Our strategy has allowed an additional insight into both specific protein function and the mechanisms of chondrogenesis and has provided a panel of protein markers of this differentiation process in hBMSCs.


Asunto(s)
Células de la Médula Ósea/metabolismo , Diferenciación Celular , Condrocitos/citología , Células Madre Mesenquimatosas/metabolismo , Secuencia de Bases , Biomarcadores/metabolismo , Células de la Médula Ósea/citología , Células Cultivadas , Cromatografía Liquida , Cartilla de ADN , Bases de Datos de Proteínas , Humanos , Células Madre Mesenquimatosas/citología , Proteómica , Reacción en Cadena en Tiempo Real de la Polimerasa , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
15.
Proteome Sci ; 10(1): 55, 2012 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-22971006

RESUMEN

BACKGROUND: The field of biomarker discovery, development and application has been the subject of intense interest and activity, especially with the recent emergence of new technologies, such as proteomics-based approaches. In proteomics, search for biomarkers in biological fluids such as human serum is a challenging issue, mainly due to the high dynamic range of proteins present in these types of samples. Methods for reducing the content of most highly abundant proteins have been developed, including immunodepletion or protein equalization. In this work, we report for the first time the combination of a chemical sequential depletion method based in two protein precipitations with acetonitrile and DTT, with a subsequent two-dimensional difference in-gel electrophoresis (2D-DIGE) analysis for the search of osteoarthritis (OA) biomarkers in human serum. The depletion method proposed is non-expensive, of easy implementation and allows fast sample throughput. RESULTS: Following this workflow, we have compared sample pools of human serum obtained from 20 OA patients and 20 healthy controls. The DIGE study led to the identification of 16 protein forms (corresponding to 14 different proteins) that were significantly (p < 0.05) altered in OA when compared to controls (8 increased and 7 decreased). Immunoblot analyses confirmed for the first time the increase of an isoform of Haptoglobin beta chain (HPT) in sera from OA patients. CONCLUSIONS: Altogether, these data demonstrate the utility of the proposed chemical sequential depletion for the analysis of sera in protein biomarker discovery approaches, exhibit the usefulness of quantitative 2D gel-based strategies for the characterization of disease-specific patterns of protein modifications, and also provide a list of OA biomarker candidates for validation.

16.
Front Med (Lausanne) ; 9: 963540, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36388911

RESUMEN

Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic inflammation of the joints and presence of systemic autoantibodies, with a great clinical and molecular heterogeneity. Rheumatoid Factor (RF) and anti-citrullinated protein antibodies (ACPA) are routinely used for the diagnosis of RA. However, additional serological markers are needed to improve the clinical management of this disease, allowing for better patient stratification and the desirable application of precision medicine strategies. In the present study, we investigated those systemic molecular changes that are associated with the RF and ACPA status of RA patients. To achieve this objective, we followed a proteomic biomarker pipeline from the discovery phase to validation. First, we performed an iTRAQ-based quantitative proteomic experiment on serum samples from the RA cohort of the Hospital of Santiago de Compostela (CHUS). In this discovery phase, serum samples from the CHUS cohort were pooled according to their RF/ACPA status. Shotgun analysis revealed that, in comparison with the double negative group (RF-/ACPA-), the abundance of 12 proteins was altered in the RF+/ACPA+ pool, 16 in the RF+/ACPA- pool and 10 in the RF-/ACPA+ pool. Vitamin D binding protein and haptoglobin were the unique proteins increased in all the comparisons. For the verification phase, 80 samples from the same cohort were analyzed individually. To this end, we developed a Multiple Reaction Monitoring (MRM) method that was employed in a comprehensive targeted analysis with the aim of verifying the results obtained in the discovery phase. Thirty-one peptides belonging to 12 proteins associated with RF and/or ACPA status were quantified by MRM. In a final validation phase, the serum levels of alpha-1-acid glycoprotein 1 (A1AG1), haptoglobin (HPT) and retinol-binding protein 4 (RET4) were measured by immunoassays in the RA cohort of the Hospital of A Coruña (HUAC). The increase of two of these putative biomarkers in the double seropositive group was validated in 260 patients from this cohort (p = 0.009 A1AG1; p = 0.003 HPT). The increased level of A1AG1 showed association with RF rather than ACPA (p = 0.023), whereas HPT showed association with ACPA rather than RF (p = 0.013). Altogether, this study has allowed a further classification of the RA seropositive patients into two novel clusters: RF+A1AG+ and ACPA+HPT+. The determination of A1AG1 and HPT in serum would provide novel information useful for RA patient stratification, which could facilitate the effective implementation of personalized medicine in routine clinical practice.

17.
BMJ Open ; 12(3): e051378, 2022 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-35318229

RESUMEN

INTRODUCTION: Non-infectious uveitis include a heterogeneous group of sight-threatening and incapacitating conditions. Their correct management sometimes requires the use of immunosuppressive drugs (ISDs), prescribed in monotherapy or in combination. Several observational studies showed that the use of ISDs in combination could be more effective than and as safe as their use in monotherapy. However, a direct comparison between these two treatment strategies has not been carried out yet. METHODS AND ANALYSIS: The Combination THerapy with mEthotrexate and adalImumAb for uveitis (CoTHEIA) study is a phase III, multicentre, prospective, randomised, single-blinded with masked outcome assessment, parallel three arms with 1:1:1 allocation, active-controlled, superiority study design, comparing the efficacy, safety and cost-effectiveness of methotrexate, adalimumab or their combination in non-infectious non-anterior uveitis. We aim to recruit 192 subjects. The duration of the treatment and follow-up will last up to 52 weeks, plus 70 days follow-up with no treatment. The complete and maintained resolution of the ocular inflammation will be assessed by masked evaluators (primary outcome). In addition to other secondary measurements of efficacy (quality of life, visual acuity and costs) and safety, we will identify subjects' subgroups with different treatment responses by developing prediction models based on machine learning techniques using genetic and proteomic biomarkers. ETHICS AND DISSEMINATION: The protocol, annexes and informed consent forms were approved by the Reference Clinical Research Ethic Committee at the Hospital Clínico San Carlos (Madrid, Spain) and the Spanish Agency for Medicines and Health Products. We will elaborate a dissemination plan including production of materials adapted to several formats to communicate the clinical trial progress and findings to a broad group of stakeholders. The promoter will be the only access to the participant-level data, although it can be shared within the legal situation. TRIAL REGISTRATION NUMBER: 2020-000130-18; NCT04798755.


Asunto(s)
Uveítis Anterior , Uveítis , Adalimumab/uso terapéutico , Ensayos Clínicos Fase III como Asunto , Análisis Costo-Beneficio , Humanos , Metotrexato/uso terapéutico , Estudios Multicéntricos como Asunto , Evaluación de Resultado en la Atención de Salud , Estudios Prospectivos , Proteómica , Calidad de Vida , Ensayos Clínicos Controlados Aleatorios como Asunto , Proyectos de Investigación , Resultado del Tratamiento , Uveítis/tratamiento farmacológico , Uveítis Anterior/tratamiento farmacológico
18.
J Proteome Res ; 10(8): 3701-11, 2011 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-21692455

RESUMEN

Chondrocytes are widely used as an in vitro model of cartilage diseases such as osteoarthritis (OA). As the unique residents of mature cartilage, they are responsible of the synthesis and release of proteins essential for a proper tissue turnover. In this work, the stable isotope labeling with amino acids in cell culture (SILAC) technique has been standardized in primary human articular chondrocytes (HACs) for quantitative proteomic analyses. Then, it has been employed to study those protein modifications caused by the proinflammatory cytokine Interleukin-1beta (IL-1ß), a well-known OA mediator, in these cells. Quantitative analysis of the IL-1ß-treated HACs proteome revealed a global increase in cellular chaperones concurrent with a down-regulation of the actin cytoskeleton. HACs secretome analysis led to the identification and quantification of 115 proteins and unveiled the effects of the cytokine on the cartilage extracellular matrix metabolism. Among those modulated proteins, three protein clusters were found to be remarkably increased by IL-1ß: proinflammatory mediators and proteases, type VI collagen and proteins known to bind this molecule, and proteins related with the TGF-beta pathway. On the other hand, secretion of aggrecan, two vitamin K-dependent proteins, and thrombospondin, among others, was strongly reduced. Altogether, these data demonstrate the usefulness of metabolic labeling for quantitative proteomics studies in HACs, show the complementarity of intracellular proteome and secretome analyses, and provide a comprehensive study of the IL-1ß-mediated effects on these cells. Proteins identified in the secretome approach have a potential use as biomarkers or therapeutic targets for OA.


Asunto(s)
Condrocitos/metabolismo , Interleucina-1beta/metabolismo , Proteoma , Western Blotting , Células Cultivadas , Cromatografía Liquida , Medios de Cultivo Condicionados , Electroforesis en Gel de Poliacrilamida , Humanos , Reacción en Cadena en Tiempo Real de la Polimerasa , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Factor de Crecimiento Transformador beta/metabolismo
19.
J Proteome Res ; 10(8): 3399-417, 2011 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-21612302

RESUMEN

Biofilm formation is one of the main causes for the persistence of Acinetobacter baumannii, a pathogen associated with severe infections and outbreaks in hospitals. Here, we performed comparative proteomic analyses (2D-DIGE and MALDI-TOF/TOF and iTRAQ/SCX-LC-MS/MS) of cells at three different conditions: exponential, late stationary phase, and biofilms. These results were compared with alterations in the proteome resulting from exposure to a biofilm inhibitory compound (salicylate). Using this multiple-approach strategy, proteomic patterns showed a unique lifestyle for A. baumannii biofilms and novel associated proteins. Several cell surface proteins (such as CarO, OmpA, OprD-like, DcaP-like, PstS, LysM, and Omp33), as well as those involved in histidine metabolism (like Urocanase), were found to be implicated in biofilm formation, this being confirmed by gene disruption. Although l-His uptake triggered biofilms efficiently in wild-type A. baumannii, no effect was observed in Urocanase and OmpA mutants, while a slight increase was observed in a CarO deficient strain. We conclude that Urocanase plays a crucial role in histidine metabolism leading to biofilm formation and that OmpA and CarO can act as channels for L-His uptake. Finally, we propose a model in which novel proteins are suggested for the first time as targets for preventing the formation of A. baumannii biofilms.


Asunto(s)
Acinetobacter baumannii/metabolismo , Proteínas Bacterianas/metabolismo , Biopelículas , Histidina/metabolismo , Proteoma , Acinetobacter baumannii/genética , Acinetobacter baumannii/fisiología , Resinas de Intercambio de Catión , Cromatografía por Intercambio Iónico , Electroforesis en Gel Bidimensional , Genes Bacterianos , Prueba de Complementación Genética , Microscopía Electrónica de Rastreo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
20.
Mol Cell Proteomics ; 8(1): 172-89, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18784066

RESUMEN

Mitochondria are involved in many cellular processes; mitochondrial dysfunctions have been associated with apoptosis, aging, and a number of pathological conditions, including osteoarthritis (OA). Mitochondrial proteins are attractive targets for the study of metabolism of the chondrocyte, the unique cell type present in mature cartilage, and its role in tissue degradation. Using a proteomics approach based on two-dimensional DIGE and MALDI-TOF/TOF mass spectrometric identification of mitochondria- enriched protein fractions from human articular chondrocytes, we analyzed mitochondrial protein changes that are characteristic of OA chondrocytes. A total of 73 protein forms were unambiguously identified as significantly altered in OA; 23 of them have been previously described as mitochondrial. An extensive statistical and cluster analysis of the data revealed a mitochondrial protein profile characteristic for OA. This pattern includes alterations in energy production, maintenance of mitochondrial membrane integrity, and free radical detoxification. Real time PCR, Western blot, and immunohistofluorescence assays confirmed a significant decrease of the major mitochondrial antioxidant protein manganese-superoxide dismutase (SOD2) in the superficial layer of OA cartilage. As possible outputs for this antioxidant deficiency, we found an increase of intracellular reactive oxygen species generation in OA chondrocytes and also verified an OA-dependent increase in the mitochondrial tumor necrosis factor-alpha receptor-associated protein 1 (TRAP1), a chaperone with a reported reactive oxygen species antagonist role. Our results describe the differences between the mitochondrial protein profiles of normal and OA chondrocytes, demonstrating that mitochondrial dysregulation occurs in cartilage cells during OA and highlighting redox imbalance as a key factor in OA pathogenesis.


Asunto(s)
Cartílago Articular/enzimología , Condrocitos/enzimología , Mitocondrias/enzimología , Mitocondrias/patología , Osteoartritis/enzimología , Proteómica , Superóxido Dismutasa/metabolismo , Cartílago Articular/patología , Condrocitos/patología , Electroforesis en Gel Bidimensional , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Espacio Intracelular/metabolismo , Proteínas Mitocondriales/metabolismo , Análisis Multivariante , Osteoartritis/patología , Oxidación-Reducción , Proteoma/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Estándares de Referencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA