Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Ecol Appl ; 34(4): e2971, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38581136

RESUMEN

Climate change is increasing the frequency of droughts and the risk of severe wildfires, which can interact with shrub encroachment and browsing by wild ungulates. Wild ungulate populations are expanding due, among other factors, to favorable habitat changes resulting from land abandonment or land-use changes. Understanding how ungulate browsing interacts with drought to affect woody plant mortality, plant flammability, and fire hazard is especially relevant in the context of climate change and increasing frequency of wildfires. The aim of this study is to explore the combined effects of cumulative drought, shrub encroachment, and ungulate browsing on the fire hazard of Mediterranean oak woodlands in Portugal. In a long-term (18 years) ungulate fencing exclusion experiment that simulated land abandonment and management neglect, we investigated the population dynamics of the native shrub Cistus ladanifer, which naturally dominates the understory of woodlands and is browsed by ungulates, comparing areas with (no fencing) and without (fencing) wild ungulate browsing. We also modeled fire behavior in browsed and unbrowsed plots considering drought and nondrought scenarios. Specifically, we estimated C. ladanifer population density, biomass, and fuel load characteristics, which were used to model fire behavior in drought and nondrought scenarios. Overall, drought increased the proportion of dead C. ladanifer shrub individuals, which was higher in the browsed plots. Drought decreased the ratio of live to dead shrub plant material, increased total fuel loading, shrub stand flammability, and the modeled fire parameters, that is, rate of surface fire spread, fireline intensity, and flame length. However, total fuel load and fire hazard were lower in browsed than unbrowsed plots, both in drought and nondrought scenarios. Browsing also decreased the population density of living shrubs, halting shrub encroachment. Our study provides long-term experimental evidence showing the role of wild ungulates in mitigating drought effects on fire hazard in shrub-encroached Mediterranean oak woodlands. Our results also emphasize that the long-term effects of land abandonment can interact with climate change drivers, affecting wildfire hazard. This is particularly relevant given the increasing incidence of land abandonment.


Asunto(s)
Sequías , Bosques , Quercus , Incendios Forestales , Animales , Quercus/fisiología , Portugal , Incendios , Ciervos/fisiología , Cistaceae/fisiología , Dinámica Poblacional , Cambio Climático , Herbivoria
2.
Proc Natl Acad Sci U S A ; 118(28)2021 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-34260386

RESUMEN

Anthropogenic nutrient enrichment is driving global biodiversity decline and modifying ecosystem functions. Theory suggests that plant functional types that fix atmospheric nitrogen have a competitive advantage in nitrogen-poor soils, but lose this advantage with increasing nitrogen supply. By contrast, the addition of phosphorus, potassium, and other nutrients may benefit such species in low-nutrient environments by enhancing their nitrogen-fixing capacity. We present a global-scale experiment confirming these predictions for nitrogen-fixing legumes (Fabaceae) across 45 grasslands on six continents. Nitrogen addition reduced legume cover, richness, and biomass, particularly in nitrogen-poor soils, while cover of non-nitrogen-fixing plants increased. The addition of phosphorous, potassium, and other nutrients enhanced legume abundance, but did not mitigate the negative effects of nitrogen addition. Increasing nitrogen supply thus has the potential to decrease the diversity and abundance of grassland legumes worldwide regardless of the availability of other nutrients, with consequences for biodiversity, food webs, ecosystem resilience, and genetic improvement of protein-rich agricultural plant species.


Asunto(s)
Fabaceae/fisiología , Pradera , Internacionalidad , Nitrógeno/farmacología , Fósforo/farmacología , Biodiversidad , Biomasa , Fabaceae/efectos de los fármacos , Probabilidad
3.
Anal Bioanal Chem ; 415(4): 571-589, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36494605

RESUMEN

Over the past 15 years, synthetic cathinones have emerged as an important class of new psychoactive substances (NPS) worldwide. The proliferation of these psychostimulants and their sought-after effects among recreational drug users pose a serious threat to public health and enormous challenges to forensic laboratories. For forensic institutions, it is essential to be one step ahead of covert laboratories, foreseeing the structural changes possible to introduce in the core skeleton of cathinones while maintaining their stimulating activity. In this manner, it is feasible to equip themselves with standards of possible new cathinones and validated analytical methods for their qualitative and quantitative detection. Therefore, the aim of the work herein described was to synthesize emerging cathinones based on the evolving patterns in the illicit drug market, and to develop an analytical method for their accurate determination in forensic situations. Five so far unreported cathinones [4'-methyl-N-dimethylbuphedrone (4-MDMB), 4'-methyl-N-ethylbuphedrone (4-MNEB), 4'-methyl-N-dimethylpentedrone (4-MDMP), 4'-methyl-N-dimethylhexedrone (4-MDMH), and 4'-methyl-N-diethylbuphedrone (4-MDEB)] and a sixth one, 4'-methyl-N-ethylpentedrone, already reported to EMCDDA and also known as 4-MEAP, were synthesized and fully characterized by nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS). An analytical method for the simultaneous quantification of these cathinones in blood, using solid phase extraction (SPE) combined with gas chromatography-mass spectrometry (GC-MS) was developed and validated. The results prove that this methodology is selective, linear, precise, and accurate. For all target cathinones, the extraction efficiency was higher than 73%, linearity was observed in the range of 10 (lower limit of quantification, LLOQ) to 800 ng/mL, with coefficients of determination higher than 0.99, and the limits of detection (LODs) were 5 ng/mL for all target cathinones. The stability of these cathinones in blood matrices is dependent on the storage conditions; 4-MNEB is the most stable compound and 4-MDMH is the least stable compound. The low limits obtained allow the detection of the compounds in situations where they are involved, even if present at low concentrations.


Asunto(s)
Alcaloides , Cromatografía de Gases y Espectrometría de Masas/métodos , Espectrometría de Masas , Alcaloides/análisis , Extracción en Fase Sólida
4.
Ecol Lett ; 25(4): 754-765, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34957674

RESUMEN

Nutrient enrichment can simultaneously increase and destabilise plant biomass production, with co-limitation by multiple nutrients potentially intensifying these effects. Here, we test how factorial additions of nitrogen (N), phosphorus (P) and potassium with essential nutrients (K+) affect the stability (mean/standard deviation) of aboveground biomass in 34 grasslands over 7 years. Destabilisation with fertilisation was prevalent but was driven by single nutrients, not synergistic nutrient interactions. On average, N-based treatments increased mean biomass production by 21-51% but increased its standard deviation by 40-68% and so consistently reduced stability. Adding P increased interannual variability and reduced stability without altering mean biomass, while K+ had no general effects. Declines in stability were largest in the most nutrient-limited grasslands, or where nutrients reduced species richness or intensified species synchrony. We show that nutrients can differentially impact the stability of biomass production, with N and P in particular disproportionately increasing its interannual variability.


Asunto(s)
Ecosistema , Pradera , Biodiversidad , Biomasa , Eutrofización , Nitrógeno , Nutrientes
5.
Glob Chang Biol ; 28(8): 2678-2688, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35038782

RESUMEN

Nutrients and herbivores are well-known drivers of grassland diversity and stability in local communities. However, whether they interact to impact the stability of aboveground biomass and whether these effects depend on spatial scales remain unknown. It is also unclear whether nutrients and herbivores impact stability via different facets of plant diversity including species richness, evenness, and changes in community composition through time and space. We used a replicated experiment adding nutrients and excluding herbivores for 5 years in 34 global grasslands to explore these questions. We found that both nutrient addition and herbivore exclusion alone reduced stability at the larger spatial scale (aggregated local communities; gamma stability), but through different pathways. Nutrient addition reduced gamma stability primarily by increasing changes in local community composition over time, which was mainly driven by species replacement. Herbivore exclusion reduced gamma stability primarily by decreasing asynchronous dynamics among local communities (spatial asynchrony). Their interaction weakly increased gamma stability by increasing spatial asynchrony. Our findings indicate that disentangling the processes operating at different spatial scales may improve conservation and management aiming at maintaining the ability of ecosystems to reliably provide functions and services for humanity.


Asunto(s)
Pradera , Herbivoria , Biodiversidad , Ecosistema , Nutrientes
6.
Ecol Lett ; 24(10): 2100-2112, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34240557

RESUMEN

The effects of altered nutrient supplies and herbivore density on species diversity vary with spatial scale, because coexistence mechanisms are scale dependent. This scale dependence may alter the shape of the species-area relationship (SAR), which can be described by changes in species richness (S) as a power function of the sample area (A): S = cAz , where c and z are constants. We analysed the effects of experimental manipulations of nutrient supply and herbivore density on species richness across a range of scales (0.01-75 m2 ) at 30 grasslands in 10 countries. We found that nutrient addition reduced the number of species that could co-occur locally, indicated by the SAR intercepts (log c), but did not affect the SAR slopes (z). As a result, proportional species loss due to nutrient enrichment was largely unchanged across sampling scales, whereas total species loss increased over threefold across our range of sampling scales.


Asunto(s)
Biodiversidad , Pradera , Ecosistema , Herbivoria , Nutrientes
7.
New Phytol ; 231(5): 1784-1797, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34076289

RESUMEN

Interaction effects of different stressors, such as extreme drought and plant invasion, can have detrimental effects on ecosystem functioning and recovery after drought. With ongoing climate change and increasing plant invasion, there is an urgent need to predict the short- and long-term interaction impacts of these stressors on ecosystems. We established a combined precipitation exclusion and shrub invasion (Cistus ladanifer) experiment in a Mediterranean cork oak (Quercus suber) ecosystem with four treatments: (1) Q. suber control; (2) Q. suber with rain exclusion; (3) Q. suber invaded by shrubs; and (4) Q. suber with rain exclusion and shrub invasion. As key parameter, we continuously measured ecosystem water fluxes. In an average precipitation year, the interaction effects of both stressors were neutral. However, the combination of imposed drought and shrub invasion led to amplifying interaction effects during an extreme drought by strongly reducing tree transpiration. Contrarily, the imposed drought reduced the competitiveness of the shrubs in the following recovery period, which buffered the negative effects of shrub invasion on Q. suber. Our results demonstrate the highly dynamic and nonlinear effects of interacting stressors on ecosystems and urges for further investigations on biotic interactions in a context of climate change pressures.


Asunto(s)
Sequías , Quercus , Ecosistema , Árboles , Agua
8.
Glob Chang Biol ; 27(11): 2441-2457, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33675118

RESUMEN

Droughts can strongly affect grassland productivity and biodiversity, but responses differ widely. Nutrient availability may be a critical factor explaining this variation, but is often ignored in analyses of drought responses. Here, we used a standardized nutrient addition experiment covering 10 European grasslands to test if full-factorial nitrogen, phosphorus, and potassium addition affected plant community responses to inter-annual variation in drought stress and to the extreme summer drought of 2018 in Europe. We found that nutrient addition amplified detrimental drought effects on community aboveground biomass production. Drought effects also differed between functional groups, with a negative effect on graminoid but not forb biomass production. Our results imply that eutrophication in grasslands, which promotes dominance of drought-sensitive graminoids over forbs, amplifies detrimental drought effects. In terms of climate change adaptation, agricultural management would benefit from taking into account differential drought impacts on fertilized versus unfertilized grasslands, which differ in ecosystem services they provide to society.


Asunto(s)
Sequías , Pradera , Biodiversidad , Biomasa , Ecosistema , Europa (Continente)
9.
Anal Bioanal Chem ; 413(8): 2257-2273, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33575815

RESUMEN

The popularity of new psychoactive substances among drug users has become a public health concern worldwide. Among them, synthetic cannabinoids (SCs) represent the largest, most diversified and fastest growing group. Commonly known as 'synthetic marijuana' as an alternative to cannabis, these synthetic compounds are easily accessible via the internet and are sold as 'herbal incenses' under different brand names with no information about the chemical composition. In the present work, we aim to integrate gas chromatography-tandem mass spectrometry (GC-MS) and nuclear magnetic resonance (NMR) data as useful strategy for the identification and confirmation of synthetic cannabinoids present in nine seized herbal incenses. The analysis of all samples allowed the initial identification of 9 SCs, namely 5 napthoylindoles (JWH-018, JWH-073, JWH-122, JWH-210, MAM-2201), APINACA, XLR-11 and CP47,497-C8 and its enantiomer. JWH-018 was the most frequently detected synthetic compound (8 of 9 samples), while APINACA and XLR-11 were only identified in one herbal product. Other non-cannabinoid drugs, including oleamide, vitamin E and vitamin E acetate, have also been detected. Oleamide and vitamin E are two adulterants, frequently added to herbal products to mask the active ingredients or added as preservatives. However, to our knowledge, no analytical data about vitamin E acetate was reported in herbal products, being the first time that this compound is identified on this type of samples. The integration data obtained from the used analytical technologies proved to be useful, allowing the preliminary identification of the different SCs in the mixture. Furthermore, the examination of mass spectral fragment ions, as well as the results of both 1D and 2D NMR experiments, enabled the identification and confirmation of the molecular structure of SCs.


Asunto(s)
Cannabinoides/análisis , Drogas de Diseño/química , Plantas Medicinales/química , Psicotrópicos/análisis , Cromatografía de Gases y Espectrometría de Masas/métodos , Humanos , Espectrometría de Masas en Tándem
10.
Glob Chang Biol ; 26(12): 7173-7185, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32786128

RESUMEN

Soil nitrogen (N) availability is critical for grassland functioning. However, human activities have increased the supply of biologically limiting nutrients, and changed the density and identity of mammalian herbivores. These anthropogenic changes may alter net soil N mineralization (soil net Nmin ), that is, the net balance between N mineralization and immobilization, which could severely impact grassland structure and functioning. Yet, to date, little is known about how fertilization and herbivore removal individually, or jointly, affect soil net Nmin across a wide range of grasslands that vary in soil and climatic properties. Here we collected data from 22 grasslands on five continents, all part of a globally replicated experiment, to assess how fertilization and herbivore removal affected potential (laboratory-based) and realized (field-based) soil net Nmin . Herbivore removal in the absence of fertilization did not alter potential and realized soil net Nmin . However, fertilization alone and in combination with herbivore removal consistently increased potential soil net Nmin. Realized soil net Nmin , in contrast, significantly decreased in fertilized plots where herbivores were removed. Treatment effects on potential and realized soil net Nmin were contingent on site-specific soil and climatic properties. Fertilization effects on potential soil net Nmin were larger at sites with higher mean annual precipitation (MAP) and temperature of the wettest quarter (T.q.wet). Reciprocally, realized soil net Nmin declined most strongly with fertilization and herbivore removal at sites with lower MAP and higher T.q.wet. In summary, our findings show that anthropogenic nutrient enrichment, herbivore exclusion and alterations in future climatic conditions can negatively impact soil net Nmin across global grasslands under realistic field conditions. This is an important context-dependent knowledge for grassland management worldwide.


Asunto(s)
Nitrógeno , Suelo , Animales , Ecosistema , Fertilización , Pradera , Herbivoria , Humanos , Nitrógeno/análisis
11.
Glob Chang Biol ; 26(8): 4572-4582, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32520438

RESUMEN

Microbial processing of aggregate-unprotected organic matter inputs is key for soil fertility, long-term ecosystem carbon and nutrient sequestration and sustainable agriculture. We investigated the effects of adding multiple nutrients (nitrogen, phosphorus and potassium plus nine essential macro- and micro-nutrients) on decomposition and biochemical transformation of standard plant materials buried in 21 grasslands from four continents. Addition of multiple nutrients weakly but consistently increased decomposition and biochemical transformation of plant remains during the peak-season, concurrent with changes in microbial exoenzymatic activity. Higher mean annual precipitation and lower mean annual temperature were the main climatic drivers of higher decomposition rates, while biochemical transformation of plant remains was negatively related to temperature of the wettest quarter. Nutrients enhanced decomposition most at cool, high rainfall sites, indicating that in a warmer and drier future fertilized grassland soils will have an even more limited potential for microbial processing of plant remains.


Asunto(s)
Ecosistema , Pradera , Carbono , Nitrógeno/análisis , Nutrientes , Suelo
12.
New Phytol ; 222(3): 1271-1283, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30604465

RESUMEN

The 'two-water-worlds' hypothesis is based on stable isotope differences in stream, soil and xylem waters in dual isotope space. It postulates no connectivity between bound and mobile soil waters, and preferential plant water uptake of bound soil water sources. We tested the pool-weighted impact of isotopically distinct water pools for hydrological cycling, the influence of species-specific water use and the degree of ecohydrological separation. We combined stable isotope analysis (δ18 O and δ2 H) of ecosystem water pools of precipitation, groundwater, soil and xylem water of two distinct species (Quercus suber, Cistus ladanifer) with observations of soil water contents and sap flow. Shallow soil water was evaporatively enriched during dry-down periods, but enrichment faded strongly with depth and upon precipitation events. Despite clearly distinct water sources and water-use strategies, both species displayed a highly opportunistic pattern of root water uptake. Here we offer an alternative explanation, showing that the isotopic differences between soil and plant water vs groundwater can be fully explained by spatio-temporal dynamics. Pool weighting the contribution of evaporatively enriched soil water reveals only minor annual impacts of these sources to ecosystem water cycling (c. 11% of bulk soil water and c. 14% of transpired water).


Asunto(s)
Modelos Biológicos , Agua/metabolismo , Transporte Biológico , Cistus/metabolismo , Deuterio/metabolismo , Ecosistema , Agua Subterránea/química , Isótopos de Oxígeno/metabolismo , Raíces de Plantas/metabolismo , Quercus/metabolismo , Lluvia , Estaciones del Año , Suelo/química , Presión de Vapor , Xilema/metabolismo
13.
J Environ Manage ; 232: 1066-1074, 2019 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33395758

RESUMEN

Herbivory, plant facilitation, and competition have complex impacts on tree regeneration which are seldom investigated together. Grazing exclosure experiments have allowed quantification of the effects of large herbivores on tree regeneration dynamics but have often ignored the effect of herbivorous insects. We experimentally tested how folivory (percentage of leaf damaged by insects) and microenvironment (tree canopy cover and herbs) jointly alter performance (growth and survival) of seedlings of two dominant Mediterranean oak-species within ungulate exclosures in a 3-year field study. An agroforestry system dominated by cork oak (Quercus suber) and holm oak (Q. rotundifolia) was assessed in south-east Portugal. We aimed also to determine whether the two oak species differed in the interdependences between folivory, microenvironment, covaring factors, and seedling performance. Unexpectedly, under the low-moderate insect defoliation, growth and survival of cork and holm oak seedlings were positively associated with herbivore damage. Herb removal increased oak folivory by 1.4 times. Herb removal was also positively associated with growth, directly and indirectly through its negative effect on oak folivory. Tree canopy favored insect folivory upon cork oak seedlings directly and upon holm oak indirectly via decreasing light availability. Folivory was threefold greater upon cork than upon holm oak-seedlings. Our study shows that tree canopy, herbs, and covarying factors can affect cork and holm oak-seedling performances through complex pathways, which markedly differ for the two species. The combined effect of insect herbivory and positive and negative plant-plant interactions need to be integrated into future tree regeneration efforts toward tackling the regeneration crisis of oak agroforestry systems of the Mediterranean.

14.
New Phytol ; 218(4): 1383-1392, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29655212

RESUMEN

Trees scale leaf (AL ) and xylem (AX ) areas to couple leaf transpiration and carbon gain with xylem water transport. Some species are known to acclimate in AL  : AX balance in response to climate conditions, but whether trees of different species acclimate in AL  : AX in similar ways over their entire (continental) distributions is unknown. We analyzed the species and climate effects on the scaling of AL vs AX in branches of conifers (Pinus sylvestris, Picea abies) and broadleaved (Betula pendula, Populus tremula) sampled across a continental wide transect in Europe. Along the branch axis, AL and AX change in equal proportion (isometric scaling: b Ëœ 1) as for trees. Branches of similar length converged in the scaling of AL vs AX with an exponent of b = 0.58 across European climates irrespective of species. Branches of slow-growing trees from Northern and Southern regions preferentially allocated into new leaf rather than xylem area, with older xylem rings contributing to maintaining total xylem conductivity. In conclusion, trees in contrasting climates adjust their functional balance between water transport and leaf transpiration by maintaining biomass allocation to leaves, and adjusting their growth rate and xylem production to maintain xylem conductance.


Asunto(s)
Hojas de la Planta/anatomía & histología , Árboles/crecimiento & desarrollo , Madera/anatomía & histología , Europa (Continente) , Geografía , Modelos Estadísticos , Especificidad de la Especie , Árboles/anatomía & histología , Xilema/anatomía & histología
15.
Nat Ecol Evol ; 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39103674

RESUMEN

Global change is associated with variable shifts in the annual production of aboveground plant biomass, suggesting localized sensitivities with unclear causal origins. Combining remotely sensed normalized difference vegetation index data since the 1980s with contemporary field data from 84 grasslands on 6 continents, we show a widening divergence in site-level biomass ranging from +51% to -34% globally. Biomass generally increased in warmer, wetter and species-rich sites with longer growing seasons and declined in species-poor arid areas. Phenological changes were widespread, revealing substantive transitions in grassland seasonal cycling. Grazing, nitrogen deposition and plant invasion were prevalent in some regions but did not predict overall trends. Grasslands are undergoing sizable changes in production, with implications for food security, biodiversity and carbon storage especially in arid regions where declines are accelerating.

16.
Glob Chang Biol ; 19(12): 3677-87, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24038796

RESUMEN

Invasions have increased the size of regional species pools, but are typically assumed to reduce native diversity. However, global-scale tests of this assumption have been elusive because of the focus on exotic species richness, rather than relative abundance. This is problematic because low invader richness can indicate invasion resistance by the native community or, alternatively, dominance by a single exotic species. Here, we used a globally replicated study to quantify relationships between exotic richness and abundance in grass-dominated ecosystems in 13 countries on six continents, ranging from salt marshes to alpine tundra. We tested effects of human land use, native community diversity, herbivore pressure, and nutrient limitation on exotic plant dominance. Despite its widespread use, exotic richness was a poor proxy for exotic dominance at low exotic richness, because sites that contained few exotic species ranged from relatively pristine (low exotic richness and cover) to almost completely exotic-dominated ones (low exotic richness but high exotic cover). Both exotic cover and richness were predicted by native plant diversity (native grass richness) and land use (distance to cultivation). Although climate was important for predicting both exotic cover and richness, climatic factors predicting cover (precipitation variability) differed from those predicting richness (maximum temperature and mean temperature in the wettest quarter). Herbivory and nutrient limitation did not predict exotic richness or cover. Exotic dominance was greatest in areas with low native grass richness at the site- or regional-scale. Although this could reflect native grass displacement, a lack of biotic resistance is a more likely explanation, given that grasses comprise the most aggressive invaders. These findings underscore the need to move beyond richness as a surrogate for the extent of invasion, because this metric confounds monodominance with invasion resistance. Monitoring species' relative abundance will more rapidly advance our understanding of invasions.


Asunto(s)
Ecosistema , Especies Introducidas , Dispersión de las Plantas , Poaceae/fisiología , Biodiversidad
17.
Plants (Basel) ; 12(8)2023 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-37111859

RESUMEN

Mediterranean ecosystems face threats from both climate change and shrub invasion. As shrub cover increases, competition for water intensifies, exacerbating the negative effects of drought on ecosystem functioning. However, research into the combined effects of drought and shrub invasion on tree carbon assimilation has been limited. We used a Mediterranean cork oak (Quercus suber) woodland to investigate the effects of drought and shrub invasion by gum rockrose (Cistus ladanifer) on cork oak carbon assimilation and photosynthetic capacity. We established a factorial experiment of imposed drought (ambient and rain exclusion) and shrub invasion (invaded and non-invaded) and measured leaf water potential, stomatal conductance and photosynthesis as well as photosynthetic capacity in cork oak and gum rockrose over one year. We observed distinct detrimental effects of gum rockrose shrub invasion on the physiological responses of cork oak trees throughout the study period. Despite the imposed drought, the impact of shrub invasion was more pronounced, resulting in significant photosynthetic capacity reduction of 57% during summer. Stomatal and non-stomatal limitations were observed under moderate drought in both species. Our findings provide significant knowledge on the impact of gum rockrose invasion on the functioning of cork oak and can be used to improve the representation of photosynthesis in terrestrial biosphere models.

18.
Front Pharmacol ; 14: 1145140, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37033613

RESUMEN

Synthetic cathinones constitute the second largest groups of new psychoactive substances (NPS), which are especially popular among adolescents and young adults. Due to their potential toxicity, the recreational use of these NPS constitute a serious worldwide public health problem. However, their fast appearance in the market renders the continuous updating of NPS information highly challenging for forensic authorities. The unavailability of pharmacokinetic data for emerging NPS is critical for forensic and clinical verifications. With the ultimate goal of having a proactive approach towards the NPS issue, high resolution mass spectrometry was used in the current work to assess preliminary pharmacokinetic data for 8 selected cathinones: 4 reported substances (4-CIC, 3-CMC, 4-CMC and 4-MEAP) and 4 previously unreported ones (3-CIC, 4-MDMB, 4-MNEB and 4-MDMP) for which the emergence on the NSP market is expected to be eminent, were also included in this study. Based on the calculation of pharmacokinetic parameters, half-life and intrinsic clearance, 4-CMC and 4-MDMB are low and high clearance compounds, respectively, and all the remaining cathinones included in this study are intermediate clearance compounds. This fact anticipates the key role of metabolites as suitable biomarkers to extend detection windows beyond those provided by the parent cathinones. Reduction of the keto group and hydroxylation on the alkyl chains were the common metabolic pathways identified for all cathinones. However, the relative importance of these metabolic transformations is dependent on the cathinone substituents. The glucuronic acid conjugation to metabolites stemming for keto group reduction constituted the sole Phase II transformation identified. To our knowledge, this study constitutes the first metabolite profiling of the already reported synthetic cathinones 4-CIC, 3-CMC and 4-CMC. Noteworthy is the fact that 3-CMC accounts for almost a quarter of the quantity of powders seized during 2020. The analytical methods developed, and the metabolites characterized, are now available to be included in routine screening methods to attest the consumption of the 8 cathinones studied.

19.
Nat Commun ; 14(1): 3516, 2023 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-37316485

RESUMEN

All multicellular organisms host a diverse microbiome composed of microbial pathogens, mutualists, and commensals, and changes in microbiome diversity or composition can alter host fitness and function. Nonetheless, we lack a general understanding of the drivers of microbiome diversity, in part because it is regulated by concurrent processes spanning scales from global to local. Global-scale environmental gradients can determine variation in microbiome diversity among sites, however an individual host's microbiome also may reflect its local micro-environment. We fill this knowledge gap by experimentally manipulating two potential mediators of plant microbiome diversity (soil nutrient supply and herbivore density) at 23 grassland sites spanning global-scale gradients in soil nutrients, climate, and plant biomass. Here we show that leaf-scale microbiome diversity in unmanipulated plots depended on the total microbiome diversity at each site, which was highest at sites with high soil nutrients and plant biomass. We also found that experimentally adding soil nutrients and excluding herbivores produced concordant results across sites, increasing microbiome diversity by increasing plant biomass, which created a shaded microclimate. This demonstration of consistent responses of microbiome diversity across a wide range of host species and environmental conditions suggests the possibility of a general, predictive understanding of microbiome diversity.


Asunto(s)
Herbivoria , Microbiota , Biomasa , Nutrientes , Suelo
20.
Nat Commun ; 14(1): 3949, 2023 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-37402739

RESUMEN

Anthropogenic nutrient enrichment and shifts in herbivory can lead to dramatic changes in the composition and diversity of aboveground plant communities. In turn, this can alter seed banks in the soil, which are cryptic reservoirs of plant diversity. Here, we use data from seven Nutrient Network grassland sites on four continents, encompassing a range of climatic and environmental conditions, to test the joint effects of fertilization and aboveground mammalian herbivory on seed banks and on the similarity between aboveground plant communities and seed banks. We find that fertilization decreases plant species richness and diversity in seed banks, and homogenizes composition between aboveground and seed bank communities. Fertilization increases seed bank abundance especially in the presence of herbivores, while this effect is smaller in the absence of herbivores. Our findings highlight that nutrient enrichment can weaken a diversity maintaining mechanism in grasslands, and that herbivory needs to be considered when assessing nutrient enrichment effects on seed bank abundance.


Asunto(s)
Pradera , Herbivoria , Animales , Banco de Semillas , Suelo , Plantas , Nutrientes , Ecosistema , Mamíferos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA