Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Int J Mol Sci ; 25(4)2024 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-38396866

RESUMEN

Vitamin D3 (VitD3) plays a crucial role in various cellular functions through its receptor interaction. The biological activity of Vitamin D3 can vary based on its solubility and stability. Thus, the challenge lies in maximizing its biological effects through its complexation within cyclodextrin (ßNS-CDI 1:4) nanosponges (NS) (defined as VitD3NS). Therefore, its activity has been evaluated on two different gut-brain axes (healthy gut/degenerative brain and inflammatory bowel syndrome gut/degenerative brain axis). At the gut level, VitD3-NS mitigated liposaccharide-induced damage (100 ng/mL; for 48 h), restoring viability, integrity, and activity of tight junctions and reducing ROS production, lipid peroxidation, and cytokines levels. Following intestinal transit, VitD3-NS improved the neurodegenerative condition in the healthy axis and the IBS model, suggesting the ability of VitD3-NS to preserve efficacy and beneficial effects even in IBS conditions. In conclusion, this study demonstrates the ability of this novel form of VitD3, named VitD3-NS, to act on the gut-brain axis in healthy and damaged conditions, emphasizing enhanced biological activity through VitD3 complexation, as such complexation increases the beneficial effect of vitamin D3 in both the gut and brain by about 50%.


Asunto(s)
Colecalciferol , Síndrome del Colon Irritable , Humanos , Colecalciferol/farmacología , Colecalciferol/uso terapéutico , Síndrome del Colon Irritable/tratamiento farmacológico , Eje Cerebro-Intestino , Citocinas , Encéfalo , Vitamina D/farmacología , Vitamina D/uso terapéutico
2.
Int J Mol Sci ; 24(4)2023 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-36834707

RESUMEN

The COVID-19 pandemic showed the crucial significance of investing in and conducting research on infectious diseases [...].


Asunto(s)
COVID-19 , Enfermedades Transmisibles , Humanos , SARS-CoV-2 , Pandemias
3.
Chemistry ; 28(6): e202104201, 2022 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-34870350

RESUMEN

Manufactured globally on industrial scale, cyclodextrins (CD) are cyclic oligosaccharides produced by enzymatic conversion of starch. Their typical structure of truncated cone can host a wide variety of guest molecules to create inclusion complexes; indeed, we daily use CD as unseen components of food, cosmetics, textiles and pharmaceutical excipients. The synthesis of active material composites from CD resources can enable or enlarge the effective utilization of these products in the battery industry with some economical as well as environmental benefits. New and simple strategies are here presented for the synthesis of nanostructured silicon and sulfur composite materials with carbonized hyper cross-linked CD (nanosponges) that show satisfactory performance as high-capacity electrodes. For the sulfur cathode, the mesoporous carbon host limits polysulfide dissolution and shuttle effects and guarantees stable cycling performance. The embedding of silicon nanoparticles into the carbonized nanosponge allows to achieve high capacity and excellent cycling performance. Moreover, due to the high surface area of the silicon composite, the characteristics at the electrode/electrolyte interface dominate the overall electrochemical reversibility, opening a detailed analysis on the behavior of the material in different electrolytes. We show that the use of commercial LP30 electrolyte causes a larger capacity fade, and this is associated with different solid electrolyte interface layer formation and it is also demonstrated that fluoroethylene carbonate addition can significantly increase the capacity retention and the overall performance of our nanostructured Si/C composite in both ether-based and LP30 electrolytes. As a result, an integration of the Si/C and S/C composites is proposed to achieve a complete lithiated Si-S cell.


Asunto(s)
Ciclodextrinas , Silicio , Carbono , Electrodos , Azufre
4.
Int J Mol Sci ; 23(8)2022 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-35456919

RESUMEN

Nutraceuticals are bioactive or chemical compounds acclaimed for their valuable biological activities and health-promoting effects. The global community is faced with many health concerns such as cancers, cardiovascular and neurodegenerative diseases, diabetes, arthritis, osteoporosis, etc. The effect of nutraceuticals is similar to pharmaceuticals, even though the term nutraceutical has no regulatory definition. The usage of nutraceuticals, to prevent and treat the aforementioned diseases, is limited by several features such as poor water solubility, low bioavailability, low stability, low permeability, low efficacy, etc. These downsides can be overcome by the application of the field of nanotechnology manipulating the properties and structures of materials at the nanometer scale. In this review, the linear and cyclic dextrin, formed during the enzymatic degradation of starch, are highlighted as highly promising nanomaterials- based drug delivery systems. The modified cyclic dextrin, cyclodextrin (CD)-based nanosponges (NSs), are well-known delivery systems of several nutraceuticals such as quercetin, curcumin, resveratrol, thyme essential oil, melatonin, and appear as a more advanced drug delivery system than modified linear dextrin. CD-based NSs prolong and control the nutraceuticals release, and display higher biocompatibility, stability, and solubility of poorly water-soluble nutraceuticals than the CD-inclusion complexes, or uncomplexed nutraceuticals. In addition, the well-explored CD-based NSs pathways, as drug delivery systems, are described. Although important progress is made in drug delivery, all the findings will serve as a source for the use of CD-based nanosystems for nutraceutical delivery. To sum up, our review introduces the extensive literature about the nutraceutical concepts, synthesis, characterization, and applications of the CD-based nano delivery systems that will further contribute to the nutraceutical delivery with more potent nanosystems based on linear dextrins.


Asunto(s)
Ciclodextrinas , Dextrinas , Disponibilidad Biológica , Suplementos Dietéticos , Sistemas de Liberación de Medicamentos , Agua
5.
Int J Mol Sci ; 22(8)2021 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-33921614

RESUMEN

Heart failure (HF) prevalence is increasing among the aging population, and the mortality rate remains unacceptably high despite improvements in therapy. Myocardial ischemia (MI) and, consequently, ischemia/reperfusion injury (IRI), are frequently the basis of HF development. Therefore, cardioprotective strategies to limit IRI are mandatory. Nanocarriers have been proposed as alternative therapy for cardiovascular disease. Controlled reoxygenation may be a promising strategy. Novel nanocarriers, such as cyclic nigerosyl-nigerose (CNN), can be innovative tools for oxygen delivery in a controlled manner. In this study we analyzed new CNN-based formulations as oxygen nanocarriers (O2-CNN), and compared them with nitrogen CNN (N2-CNN). These different CNN-based formulations were tested using two cellular models, namely, cardiomyoblasts (H9c2), and endothelial (HMEC) cell lines, at different concentrations. The effects on the growth curve during normoxia (21% O2, 5% CO2 and 74% N2) and their protective effects during hypoxia (1% O2, 5% CO2 and 94% N2) and reoxygenation (21% O2, 5% CO2 and 74% N2) were studied. Neither O2-CNN nor N2-CNN has any effect on the growth curve during normoxia. However, O2-CNN applied before hypoxia induces a 15-30% reduction in cell mortality after hypoxia/re-oxygenation when compared to N2-CNN. O2-CNN showed a marked efficacy in controlled oxygenation, which suggests an interesting potential for the future medical application of soluble nanocarrier systems for MI treatment.


Asunto(s)
Glucanos/química , Infarto del Miocardio/tratamiento farmacológico , Oxígeno/química , Daño por Reperfusión/tratamiento farmacológico , Línea Celular , Supervivencia Celular/efectos de los fármacos , Humanos , Estructura Molecular , Oxígeno/administración & dosificación
6.
Molecules ; 26(19)2021 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-34641423

RESUMEN

Melatonin (MT) is a molecule of paramount importance in all living organisms, due to its presence in many biological activities, such as circadian (sleep-wake cycle) and seasonal rhythms (reproduction, fattening, molting, etc.). Unfortunately, it suffers from poor solubility and, to be used as a drug, an appropriate transport vehicle has to be developed, in order to optimize its release in the human tissues. As a possible drug-delivery system, ß-cyclodextrin (ßCD) represents a promising scaffold which can encapsulate the melatonin, releasing when needed. In this work, we present a computational study supported by experimental IR spectra on inclusion MT/ßCD complexes. The aim is to provide a robust, accurate and, at the same time, low-cost methodology to investigate these inclusion complexes both with static and dynamic simulations, in order to study the main actors that drive the interactions of melatonin with ß-cyclodextrin and, therefore, to understand its release mechanism.


Asunto(s)
Biología Computacional/métodos , Sistemas de Liberación de Medicamentos , Melatonina/metabolismo , Simulación de Dinámica Molecular , beta-Ciclodextrinas/metabolismo , Humanos , Melatonina/química , Solubilidad , beta-Ciclodextrinas/química
7.
Molecules ; 25(13)2020 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-32630831

RESUMEN

Carbon-based materials with different morphologies have special properties suitable for application in adsorption, catalysis, energy storage, and so on. Carbon spheres and carbon monoliths are also nanostructured materials showing promising results. However, the preparation of these materials often require the use of a template, which aggravates their costs, making the operations for their removal complex. In this work, hollow carbon microspheres and carbon monolith were successfully prepared via carbonization of hyper-crosslinked polymer based on either cyclodextrins or amylose, in a template-free way. The carbons obtained are of the microporous type, showing a surface area up to 610 m2/g, and a narrow pore distribution, typically between 5 and 15 Å.


Asunto(s)
Carbono/química , Microesferas , Oligosacáridos/química , Amilosa/química , Microscopía Electrónica de Rastreo , Nanoestructuras/química , Pirólisis , beta-Ciclodextrinas/química
8.
Molecules ; 25(12)2020 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-32560204

RESUMEN

This study aims to evaluate the bioeffects of glutathione-responsive ß-cyclodextrin-based nanosponges (GSH-NSs) on two- (2D) and three-dimensional (3D) cell cultures. The bioeffects of two types of GSH-NS formulations, with low (GSH-NS B) and high (GSH-NS D) disulfide-bond content, were evaluated on 2D colorectal (HCT116 and HT-29) and prostatic (DU-145 and PC3) cancer cell cultures. In particular, the cellular uptake of GSH-NS was evaluated, as their effects on cell growth, mitochondrial activity, membrane integrity, cell cycle distribution, mRNA expression, and reactive oxygen species production. The effect of GSH-NSs on cell growth was also evaluated on multicellular spheroids (MCS) and a comparison of the GSH-NS cell growth inhibitory activity, in terms of inhibition concentration (IC)50 values, was performed between 2D and 3D cell cultures. A significant decrease in 2D cell growth was observed at high GSH-NS concentrations, with the formulation with a low disulfide-bond content, GSH-NS B, being more cytotoxic than the formulation with a high disulfide-bond content, GSH-NS D. The cell growth decrease induced by GSH-NS was owing to G1 cell cycle arrest. Moreover, a significant down-regulation of mRNA expression of the cyclin genes CDK1, CDK2, and CDK4 and up-regulation of mRNA expression of the cyclin inhibitor genes CDKN1A and CDKN2A were observed. On the other hand, a significant decrease in MCS growth was also observed at high GSH-NS concentrations, but not influenced by the nanosponge disulfide-bond content, with the MCS IC50 values being significantly higher than those obtained on 2D cell cultures. GSH-NSs are suitable nanocarries as they provoke limited cellular effects, as cell cycle arrest only occurred at concentrations significantly higher than those used for drug delivery.


Asunto(s)
Antineoplásicos , Ciclodextrinas , Glutatión/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias , Esferoides Celulares/metabolismo , Antineoplásicos/química , Antineoplásicos/farmacología , Ciclodextrinas/química , Ciclodextrinas/farmacología , Preparaciones de Acción Retardada/química , Preparaciones de Acción Retardada/farmacocinética , Preparaciones de Acción Retardada/farmacología , Puntos de Control de la Fase G1 del Ciclo Celular , Células HCT116 , Células HT29 , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/patología , Células PC-3 , Esferoides Celulares/patología
9.
Beilstein J Org Chem ; 16: 1554-1563, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32704321

RESUMEN

Cyclodextrin nanosponges (CD-NS) are nanostructured crosslinked polymers made up of cyclodextrins. The reactive hydroxy groups of CDs allow them to act as multifunctional monomers capable of crosslinking to bi- or multifunctional chemicals. The most common NS synthetic pathway consists in dissolving the chosen CD and an appropriate crosslinker in organic polar aprotic liquids (e.g., N,N-dimethylformamide or dimethyl sulfoxide), which affect the final result, especially for potential biomedical applications. This article describes a new, green synthetic pathway through mechanochemistry, in particular via ball milling and using 1,1-carbonyldiimidazole as the crosslinker. The polymer obtained exhibited the same characteristics as a CD-based carbonate NS synthesized in a solvent. Moreover, after the synthesis, the polymer was easily functionalized through the reaction of the nucleophilic carboxylic group with three different organic dyes (fluorescein, methyl red, and rhodamine B) and the still reactive imidazoyl carbonyl group of the NS.

10.
J Microencapsul ; 36(8): 715-727, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31530203

RESUMEN

Aim: In this study, a nanosponge structure was synthesised with capability of encapsulating curcumin as a model polyphenolic compound and one of the herbal remedies that have widely been considered due to its ability to treat cancer.Methods: FTIR, DSC and XRD techniques were performed to confirm the formation of the inclusion complex of the nanosponge-drug.Results: DSC and XRD patterns showed an increasing stability and a decreasing crystallinity of curcumin after formation of inclusion complex. Encapsulation efficiency was 98% (w/w) and a significant increase was observed in loading capacity (184% w/w). The results of cytotoxicity assessments demonstrated no cell toxicity on the healthy cell line, while being toxic against cancer cells. Haemolysis test was performed to evaluate the blood-compatibility characteristic of nanosponge and complex and the results showed 0.54% haemolysis in the lowest complex concentration (50µgml-1) and 5.09% at the highest concentration (200µgml-1).Conclusions: Thus, the introduced system could be widely considered in cancer treatment as a drug delivery system.


Asunto(s)
Curcumina/administración & dosificación , Ciclodextrinas/química , Composición de Medicamentos , Nanoestructuras/química , Animales , Benzoatos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Curcumina/química , Curcumina/farmacología , Preparaciones de Acción Retardada , Humanos , Ratones
11.
Int J Mol Sci ; 20(22)2019 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-31717564

RESUMEN

A new magnetic nanocomposite called MIL-100(Fe) @Fe3O4@AC was synthesized by the hydrothermal method as a stable adsorbent for the removal of Rhodamine B (RhB) dye from aqueous medium. In this work, in order to increase the carbon uptake capacity, magnetic carbon was first synthesized and then the Fe3O4 was used as the iron (III) supplier to synthesize MIL-100(Fe). The size of these nanocomposite is about 30-50 nm. Compared with activated charcoal (AC) and magnetic activated charcoal (Fe3O4@AC) nanoparticles, the surface area of MIL-100(Fe) @Fe3O4@AC were eminently increased while the magnetic property of this adsorbent was decreased. The surface area of AC, Fe3O4@AC, and MIL-100(Fe) @Fe3O4@AC was 121, 351, and 620 m2/g, respectively. The magnetic and thermal property, chemical structure, and morphology of the MIL-100(Fe) @Fe3O4@AC were considered by vibrating sample magnetometer (VSM), thermogravimetric analysis (TGA), zeta potential, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), Brunner-Emmet-Teller (BET), and transmission electron microscopy (TEM) analyses. The relatively high adsorption capacity was obtained at about 769.23 mg/g compared to other adsorbents to eliminate RhB dye from the aqueous solution within 40 min. Studies of adsorption kinetics and isotherms showed that RhB adsorption conformed the Langmuir isotherm model and the pseudo second-order kinetic model. Thermodynamic amounts depicted that the RhB adsorption was spontaneous and exothermic process. In addition, the obtained nanocomposite exhibited good reusability after several cycles. All experimental results showed that MIL-100(Fe) @Fe3O4@AC could be a prospective sorbent for the treatment of dye wastewater.


Asunto(s)
Carbón Orgánico/química , Colorantes/aislamiento & purificación , Imanes/química , Nanocompuestos/química , Rodaminas/aislamiento & purificación , Contaminantes Químicos del Agua/aislamiento & purificación , Adsorción , Óxido Ferrosoférrico/química , Nanocompuestos/ultraestructura , Nanotecnología , Propiedades de Superficie , Termodinámica , Aguas Residuales/análisis , Purificación del Agua
12.
Molecules ; 23(7)2018 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-29997364

RESUMEN

Electrospun beta-cyclodextrin (ßCD)-based polymers can combine a high surface-to-volume ratio and a high loading/controlled-release-system potential. In this work, pyromellitic dianhydride (PMDA)/ßCD-based nanosponge microfibers were used to study the capability to host a common insect repellent (N,N-diethyl-3-toluamide (DEET)) and to monitor its release over time. Fibrous samples characterized by an average fibrous diameter of 2.8 ± 0.8 µm were obtained and subsequently loaded with DEET, starting from a 10 g/L diethyl ether (DEET) solution. The loading capacity of the system was assessed via HPLC/UV⁻Vis analysis and resulted in 130 mg/g. The releasing behavior was followed by leaving fibrous DEET-loaded nanosponge samples in air at room temperature for a period of between 24 h and 2 weeks. The releasing rate and the amount were calculated by thermogravimetric analysis (TGA), and the release of the repellent was found to last for over 2 weeks. Eventually, both the chemical composition and sample morphology were proven to play a key role for the high sample loading capacity, determining the microfibers' capability to be applied as an effective controlled-release system.


Asunto(s)
Benzoatos/química , Celulosa/química , Ciclodextrinas/química , DEET/química , Éter/química , Preparaciones de Acción Retardada , Termogravimetría
13.
AAPS PharmSciTech ; 19(5): 2358-2369, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29869305

RESUMEN

Rilpivrine is BCS class II drug used for treatment of HIV infection. The drug has low aqueous solubility (0.0166 mg/ml) and dissolution rate leading to low bioavailability (32%). Aim of this work was to enhance solubility and dissolution of rilpivirine using beta-cyclodextrin-based nanosponges. These nanosponges are biocompatible nanoporous particles having high loading capacity to form supramolecular inclusion and non-inclusion complexes with hydrophilic and lipophilic drugs for solubility enhancement. Beta-cyclodextrin was crosslinked with carbonyl diimidazole and pyromellitic dianhydride to prepare nanosponges. The nanosponges were loaded with rilpivirine by solvent evaporation method. Binary and ternary complexes of drug with ß-CD, HP-ß-CD, nanosponges, and tocopherol polyethylene glycol succinate were prepared and characterized by phase solubility, saturation solubility in different media, in vitro dissolution, and in vivo pharmacokinetics. Spectral analysis by Fourier transform infrared spectroscopy, powder X-ray diffraction, and differential scanning calorimetry was performed. Results obtained from spectral characterization confirmed inclusion complexation. Phase solubility studies indicated stable complex formation. Saturation solubility was found to be 10-13-folds higher with ternary complexes in distilled water and 12-14-fold higher in 0.1 N HCl. Solubility enhancement was evident in biorelevant media. Molecular modeling studies revealed possible mode of entrapment of rilpivirine within ß-CD cavities. A 3-fold increase in dissolution with ternary complexes was observed. Animal studies revealed nearly 2-fold increase in oral bioavailability of rilpivirine. It was inferred that electronic interactions, hydrogen bonding, and van der Waals forces are involved in the supramolecular interactions.


Asunto(s)
Fármacos Anti-VIH/metabolismo , Ciclodextrinas/metabolismo , Nanoestructuras , Rilpivirina/metabolismo , Animales , Fármacos Anti-VIH/administración & dosificación , Fármacos Anti-VIH/química , Disponibilidad Biológica , Rastreo Diferencial de Calorimetría , Ciclodextrinas/administración & dosificación , Ciclodextrinas/química , Sinergismo Farmacológico , Interacciones Hidrofóbicas e Hidrofílicas , Nanoestructuras/administración & dosificación , Nanoestructuras/química , Ratas , Ratas Wistar , Rilpivirina/administración & dosificación , Rilpivirina/química , Solubilidad , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Difracción de Rayos X
14.
Org Biomol Chem ; 13(10): 2905-12, 2015 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-25582492

RESUMEN

Cyclic nigerosylnigerose (CNN), a saucer-shaped cyclic tetrasaccharide with a shallow concave surface, was reacted with pyromellitic dianhydride in 1:2 and 1:4 ratios to give two CNN-based polymers of different degrees of crosslinking, both of which swelled upon soaking in water, acting as a 'nanosponge' (NS). These NSs evolved several phases from isotropic solution to flowing and rigid gels via suspension by gradually increasing the concentration in water. The CNN-NSs thus prepared effectively mediated the enantiodifferentiating photoisomerization of (Z)-cyclooctene (1Z) to chiral (E)-isomer (1E). The enantiomeric excess (ee) of 1E obtained was a critical function of the solvent composition and the phase evolved at different CNN-NS concentrations in water. In isotropic solution, the enantioselectivity was generally low (−4% to +6% ee) but the chiral sense of 1E was inverted by increasing the methanol content. Interestingly, the product's ee was controlled more dramatically by the phase evolved, as was the case with the cyclodextrin-based nanosponge (CD-NS) reported previously. Thus, the ee of 1E was low in solution and suspension, but suddenly leaped at the phase border of flowing gel and rigid gel to give the highest ee of 22­24%, which are much higher than those obtained with CD-NSs (6­12% ee), revealing the positive roles of the chiral void space formed upon gelation of the crosslinked saccharide polymer.


Asunto(s)
Benzoatos/química , Ciclodextrinas/química , Glucanos/química , Nanoestructuras/química , Fotoquímica/métodos , Solventes/química , Dicroismo Circular , Reactivos de Enlaces Cruzados/química , Geles , Metanol/química , Conformación Molecular , Nanotecnología/métodos , Fármacos Fotosensibilizantes/química , Polímeros/química , Polisacáridos/química , Espectrofotometría Ultravioleta , Estereoisomerismo , Agua/química
15.
Analyst ; 139(2): 375-80, 2014 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-24276364

RESUMEN

Cyclodextrin nanosponges bearing carboxylate groups have been prepared by crosslinking ß-cyclodextrin with pyromellitic dianhydride to form a carboxylic acid terminated nanoporous material. The surface of the particles was covalently modified with an anti-IgG antibody and then loaded with horseradish peroxidase. The structures of unmodified and protein modified nanosponge particles were investigated by Raman spectroscopy and imaging methods. Confocal microscopy indicates that the antibody is located in the outside of the particle while HRP is encapsulated in the inner part. The possibility to use these modified nanosponges as a signal enhancement tool in enzyme-linked colorimetric and electrochemical assays was evaluated using a sandwich format comprising immobilised gliadin as an antigen, a target anti-gliadin antibody and an anti-IgG antibody conjugated to the enzyme-loaded nanosponge immunoconjugates.


Asunto(s)
Técnicas Biosensibles/métodos , Ciclodextrinas/química , Electroquímica/métodos , Peroxidasa de Rábano Silvestre/metabolismo , Inmunoconjugados/química , Nanopartículas , Fenómenos Ópticos , Anticuerpos/análisis , Anticuerpos/inmunología , Cápsulas , Colorimetría
16.
Beilstein J Org Chem ; 10: 2586-93, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25550720

RESUMEN

A new hyper-branched water-soluble polymer was synthesized by reacting ß-cyclodextrin with pyromellitic dianhydride beyond the critical conditions that allow the phenomenon of gelation to occur. The molar ratio between the monomers is a crucial parameter that rules the gelation process. Nevertheless, the concentration of monomers in the solvent phase plays a key role as well. Hyper-branched ß-cyclodextrin-based polymers were obtained performing the syntheses with excess of solvent and cross-linking agent, and the conditions for critical dilution were determined experimentally. A hyper-branched polymer with very high water solubility was obtained and fully characterized both as for its chemical structure and for its capability to encapsulate substances. Fluorescein was used as probe molecule to test the complexation properties of the new material.

17.
Gels ; 10(4)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38667651

RESUMEN

The development of polymers obtained from renewable sources such as polysaccharides has gained scientific and industrial attention. Cross-linked bio-derived cationic polymers were synthesized via a sustainable approach exploiting a commercial maltodextrin product, namely, Glucidex 2®, as the building block, while diglycidyl ethers and triglycidyl ethers were used as the cross-linking agents. The polymer products were characterized via FTIR-ATR, TGA, DSC, XRD, SEM, elemental analysis, and zeta-potential measurements, to investigate their composition, structure, and properties. Polydispersed amorphous granules displaying thermal stabilities higher than 250 °C, nitrogen contents ranging from 0.8 wt % and 1.1 wt %, and zeta potential values between 10 mV and 15 mV were observed. Subsequently, water absorption capacity measurements ranging from 800% to 1500%, cross-linking density determination, and rheological evaluations demonstrated the promising gel-forming properties of the studied systems. Finally, nitrate, sulfate, and phosphate removal tests were performed to assess the possibility of employing the studied polymer products as suitable sorbents for water remediation. The results obtained from the ion chromatography technique showed high sorption rates, with 80% of nitrates, over 90% of sulfates, and total phosphates removal.

18.
Materials (Basel) ; 16(16)2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37629831

RESUMEN

Due to their high energy and power density, lithium-ion batteries (LIBs) have gained popularity in response to the demand for effective energy storage solutions. The importance of the electrode architecture in determining battery performance highlights the demand for optimization. By developing useful organic polymers, cyclodextrin architectures have been investigated to improve the performance of Li-based batteries. The macrocyclic oligosaccharides known as cyclodextrins (CDs) have relatively hydrophobic cavities that can enclose other molecules. There are many industries where this "host-guest" relationship has been found useful. The hydrogen bonding and suitable inner cavity diameter of CD have led to its selection as a lithium-ion diffusion channel. CDs have also been used as solid electrolytes for solid-state batteries and as separators and binders to ensure adhesion between electrode components. This review gives a general overview of CD-based materials and how they are used in battery components, highlighting their advantages.

19.
Colloids Surf B Biointerfaces ; 222: 113101, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36529037

RESUMEN

Many nutraceuticals present problems due to their poor water solubility or stability, which prevents the final bioactivity achievement. For that reason, the oral administration of KYNA complexed with HPß-CD and ßNS-CDI nanosponges was evaluated in mice. The solvent-free technology was used to prepare the complexes in a complete comparison between kneading in ball milling and classical inclusion complex preparation. The solvent-free ones showed higher strength and efficiency with ball milling, considerably reducing time. A 50 mg KYNA/kg/day dosage was orally administered in formulations showing a higher bioavailability when the nutraceutical was complexed with ßNS-CDI compared to HPß-CD and free KYNA, respectively. Several antioxidant statuses demonstrated a higher global antioxidant level perfectly related to bioavailability. Finally, the formulation of KYNA reduced the temporal oxidative stress damage in the kidney and liver, making ßNS-CDI the best formulation. These results suggest an important future application of cyclodextrin-based nanosponges for the oral delivery of nutraceuticals and their stabilization.


Asunto(s)
Ciclodextrinas , Ratones , Animales , Ácido Quinurénico , Solventes , Disponibilidad Biológica , Antioxidantes/farmacología , Solubilidad
20.
Polymers (Basel) ; 15(6)2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36987322

RESUMEN

Melatonin is a neurohormone that ameliorates many health conditions when it is administered as a drug, but its drawbacks are its oral and intravenous fast release. To overcome the limitations associated with melatonin release, cyclodextrin-based nanosponges (CD-based NSs) can be used. Under their attractive properties, CD-based NSs are well-known to provide the sustained release of the drug. Green cyclodextrin (CD)-based molecularly imprinted nanosponges (MIP-NSs) are successfully synthesized by reacting ß-Cyclodextrin (ß-CD) or Methyl-ß Cyclodextrin (M-ßCD) with citric acid as a cross-linking agent at a 1:8 molar ratio, and melatonin is introduced as a template molecule. In addition, CD-based non-molecularly imprinted nanosponges (NIP-NSs) are synthesized following the same procedure as MIP-NSs without the presence of melatonin. The resulting polymers are characterized by CHNS-O Elemental, Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric (TGA), Differential Scanning Calorimetry (DSC), Zeta Potential, and High-Performance Liquid Chromatography (HPLC-UV) analyses, etc. The encapsulation efficiencies are 60-90% for MIP-NSs and 20-40% for NIP-NSs, whereas melatonin loading capacities are 1-1.5% for MIP-NSs and 4-7% for NIP-NSs. A better-controlled drug release performance (pH = 7.4) for 24 h is displayed by the in vitro release study of MIP-NSs (30-50% released melatonin) than NIP-NSs (50-70% released melatonin) due to the different associations within the polymeric structure. Furthermore, a computational study, through the static simulations in the gas phase at a Geometry Frequency Non-covalent interactions (GFN2 level), is performed to support the inclusion complex between ßCD and melatonin with the automatic energy exploration performed by Conformer-Rotamer Ensemble Sampling Tool (CREST). A total of 58% of the CD/melatonin interactions are dominated by weak forces. CD-based MIP-NSs and CD-based NIP-NSs are mixed with cream formulations for enhancing and sustaining the melatonin delivery into the skin. The efficiency of cream formulations is determined by stability, spreadability, viscosity, and pH. This development of a new skin formulation, based on an imprinting approach, will be of the utmost importance in future research at improving skin permeation through transdermal delivery, associated with narrow therapeutic windows or low bioavailability of drugs with various health benefits.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA