RESUMEN
The ability of animal cells to sense, adhere to and remodel their local extracellular matrix (ECM) is central to control of cell shape, mechanical responsiveness, motility and signalling, and hence to development, tissue formation, wound healing and the immune response. Cell-ECM interactions occur at various specialized, multi-protein adhesion complexes that serve to physically link the ECM to the cytoskeleton and the intracellular signalling apparatus. This occurs predominantly via clustered transmembrane receptors of the integrin family. Here we review how the interplay of mechanical forces, biochemical signalling and molecular self-organization determines the composition, organization, mechanosensitivity and dynamics of these adhesions. Progress in the identification of core multi-protein modules within the adhesions and characterization of rearrangements of their components in response to force, together with advanced imaging approaches, has improved understanding of adhesion maturation and turnover and the relationships between adhesion structures and functions. Perturbations of adhesion contribute to a broad range of diseases and to age-related dysfunction, thus an improved understanding of their molecular nature may facilitate therapeutic intervention in these conditions.
Asunto(s)
Adhesión Celular , Citoesqueleto , Matriz Extracelular , Integrinas , Animales , Adhesión Celular/fisiología , Citoesqueleto/metabolismo , Matriz Extracelular/metabolismo , Adhesiones Focales/metabolismo , Integrinas/metabolismo , Transducción de Señal , Adherencias Tisulares/patologíaRESUMEN
Integrin receptors provide a dynamic, tightly-regulated link between the extracellular matrix (or cellular counter-receptors) and intracellular cytoskeletal and signalling networks, enabling cells to sense and respond to their chemical and physical environment. Talins and kindlins, two families of FERM-domain proteins, bind the cytoplasmic tail of integrins, recruit cytoskeletal and signalling proteins involved in mechanotransduction and synergize to activate integrin binding to extracellular ligands. New data reveal the domain structure of full-length talin, provide insights into talin-mediated integrin activation and show that RIAM recruits talin to the plasma membrane, whereas vinculin stabilizes talin in cell-matrix junctions. How kindlins act is less well-defined, but disease-causing mutations show that kindlins are also essential for integrin activation, adhesion, cell spreading and signalling.
Asunto(s)
Comunicación Celular/genética , Integrinas/fisiología , Proteínas de la Membrana/fisiología , Proteínas de Neoplasias/fisiología , Talina/fisiología , Animales , Adhesión Celular/genética , Comunicación Celular/fisiología , Humanos , Integrinas/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Modelos Biológicos , Familia de Multigenes/fisiología , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Unión Proteica/fisiología , Talina/genética , Talina/metabolismoRESUMEN
Inhibiting membrane association of RAS has long been considered a rational approach to anticancer therapy, which led to the development of farnesyltransferase inhibitors (FTIs). However, FTIs proved ineffective against KRAS-driven tumors. To reveal alternative therapeutic strategies, we carried out a genome-wide CRISPR-Cas9 screen designed to identify genes required for KRAS4B membrane association. We identified five enzymes in the prenylation pathway and SAFB, a nuclear protein with both DNA and RNA binding domains. Silencing SAFB led to marked mislocalization of all RAS isoforms as well as RAP1A but not RAB7A, a pattern that phenocopied silencing FNTA, the prenyltransferase α subunit shared by farnesyltransferase and geranylgeranyltransferase type I. We found that SAFB promoted RAS membrane association by controlling FNTA expression. SAFB knockdown decreased GTP loading of RAS, abrogated alternative prenylation, and sensitized RAS-mutant cells to growth inhibition by FTI. Our work establishes the prenylation pathway as paramount in KRAS membrane association, reveals a regulator of prenyltransferase expression, and suggests that reduction in FNTA expression may enhance the efficacy of FTIs.
Asunto(s)
Membrana Celular/metabolismo , Dimetilaliltranstransferasa/metabolismo , Proteínas de Unión a la Región de Fijación a la Matriz/metabolismo , Neoplasias/patología , Proteínas Asociadas a Matriz Nuclear/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Receptores de Estrógenos/metabolismo , Transferasas Alquil y Aril/genética , Transferasas Alquil y Aril/metabolismo , Sistemas CRISPR-Cas/genética , Biología Computacional , Conjuntos de Datos como Asunto , Técnicas de Silenciamiento del Gen , Humanos , Proteínas de Unión a la Región de Fijación a la Matriz/genética , Neoplasias/genética , Proteínas Asociadas a Matriz Nuclear/genética , Prenilación de Proteína , Subunidades de Proteína/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Receptores de Estrógenos/genéticaRESUMEN
The integrin family of transmembrane adhesion receptors coordinates complex signaling networks that control the ability of cells to sense and communicate with the extracellular environment. Kindlin proteins are a central cytoplasmic component of these networks, directly binding integrin cytoplasmic domains and mediating interactions with cytoskeletal and signaling proteins. The physiological importance of kindlins is well established, but how the scaffolding functions of kindlins are regulated at the molecular level is still unclear. Here, using a combination of GFP nanotrap association assays, pulldown and integrin-binding assays, and live-cell imaging, we demonstrate that full-length kindlins can oligomerize (self-associate) in mammalian cells, and we propose that this self-association inhibits integrin binding and kindlin localization to focal adhesions. We show that both kindlin-2 and kindlin-3 can self-associate and that kindlin-3 self-association is more robust. Using chimeric mapping, we demonstrate that the F2PH and F3 subdomains are important for kindlin self-association. Through comparative sequence analysis of kindlin-2 and kindlin-3, we identify kindlin-3 point mutations that decrease self-association and enhance integrin binding, affording mutant kindlin-3 the ability to localize to focal adhesions. Our results support the notion that kindlin self-association negatively regulates integrin binding.
Asunto(s)
Proteínas del Citoesqueleto/metabolismo , Integrinas/metabolismo , Secuencia de Aminoácidos , Animales , Células CHO , Cricetulus , Proteínas del Citoesqueleto/química , Adhesiones Focales , Células HEK293 , Humanos , Unión Proteica , Dominios ProteicosRESUMEN
Nuclear accumulation of the small phosphoprotein integrin cytoplasmic domain-associated protein-1 (ICAP1) results in recruitment of its binding partner, Krev/Rap1 interaction trapped-1 (KRIT1), to the nucleus. KRIT1 loss is the most common cause of cerebral cavernous malformation, a neurovascular dysplasia resulting in dilated, thin-walled vessels that tend to rupture, increasing the risk for hemorrhagic stroke. KRIT1's nuclear roles are unknown, but it is known to function as a scaffolding or adaptor protein at cell-cell junctions and in the cytosol, supporting normal blood vessel integrity and development. As ICAP1 controls KRIT1 subcellular localization, presumably influencing KRIT1 function, in this work, we investigated the signals that regulate ICAP1 and, hence, KRIT1 nuclear localization. ICAP1 contains a nuclear localization signal within an unstructured, N-terminal region that is rich in serine and threonine residues, several of which are reportedly phosphorylated. Using quantitative microscopy, we revealed that phosphorylation-mimicking substitutions at Ser-10, or to a lesser extent at Ser-25, within this N-terminal region inhibit ICAP1 nuclear accumulation. Conversely, phosphorylation-blocking substitutions at these sites enhanced ICAP1 nuclear accumulation. We further demonstrate that p21-activated kinase 4 (PAK4) can phosphorylate ICAP1 at Ser-10 both in vitro and in cultured cells and that active PAK4 inhibits ICAP1 nuclear accumulation in a Ser-10-dependent manner. Finally, we show that ICAP1 phosphorylation controls nuclear localization of the ICAP1-KRIT1 complex. We conclude that serine phosphorylation within the ICAP1 N-terminal region can prevent nuclear ICAP1 accumulation, providing a mechanism that regulates KRIT1 localization and signaling, potentially influencing vascular development.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Núcleo Celular/metabolismo , Serina/metabolismo , Proteínas Adaptadoras Transductoras de Señales/antagonistas & inhibidores , Proteínas Adaptadoras Transductoras de Señales/genética , Secuencia de Aminoácidos , Animales , Células CHO , Dominio Catalítico , Cricetinae , Cricetulus , Humanos , Proteína KRIT1/metabolismo , Mutagénesis Sitio-Dirigida , Fosforilación , Quinasas p21 Activadas/química , Quinasas p21 Activadas/metabolismoRESUMEN
KRIT1 (Krev/Rap1 Interaction Trapped-1) mutations are observed in â¼40% of autosomal-dominant cerebral cavernous malformations (CCMs), a disease occurring in up to 0.5% of the population. We show that KRIT1 functions as a switch for ß1 integrin activation by antagonizing ICAP1 (Integrin Cytoplasmic Associated Protein-1)-mediated modulation of "inside-out" activation. We present cocrystal structures of KRIT1 with ICAP1 and ICAP1 with integrin ß1 cytoplasmic tail to 2.54 and 3.0 Å resolution (the resolutions at which I/σI = 2 are 2.75 and 3.0 Å, respectively). We find that KRIT1 binds ICAP1 by a bidentate surface, that KRIT1 directly competes with integrin ß1 to bind ICAP1, and that KRIT1 antagonizes ICAP1-modulated integrin activation using this site. We also find that KRIT1 contains an N-terminal Nudix domain, in a region previously designated as unstructured. We therefore provide insights to integrin regulation and CCM-associated KRIT1 function.
Asunto(s)
Integrina beta1/química , Péptidos y Proteínas de Señalización Intracelular/química , Proteínas de la Membrana/química , Proteínas Asociadas a Microtúbulos/química , Proteínas Proto-Oncogénicas/química , Proteínas Adaptadoras Transductoras de Señales , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Línea Celular Tumoral , Secuencia Conservada , Cristalografía por Rayos X , Humanos , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Integrina beta1/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteína KRIT1 , Proteínas de la Membrana/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estructura Cuaternaria de Proteína , Proteínas Proto-Oncogénicas/metabolismo , Transducción de SeñalRESUMEN
p21-activated kinases (PAKs) are serine/threonine kinase effectors of the small GTPases Rac and Cdc42 and major participants in cell adhesion, motility, and survival. Type II PAKs (PAK4, -5, and -6) are recruited to cell-cell boundaries, where they regulate adhesion dynamics and colony escape. In contrast, the type I PAK, PAK1, does not localize to cell-cell contacts. We have now found that the other type I PAKs (PAK2 and PAK3) also fail to target to cell-cell junctions. PAKs contain extensive similarities in sequence and domain organization; therefore, focusing on PAK1 and PAK6, we used chimeras and truncation mutants to investigate their differences in localization. We observed that a weakly conserved sequence region (the variable region), located between the Cdc42-binding CRIB domain and the kinase domain, inhibits PAK1 targeting to cell-cell junctions. Accordingly, substitution of the PAK1 variable region with that from PAK6 or removal of this region of PAK1 resulted in its localization to cell-cell contacts. We further show that Cdc42 binding is required, but not sufficient, to direct PAKs to cell-cell contacts and that an N-terminal polybasic sequence is necessary for PAK1 recruitment to cell-cell contacts, but only if the variable region-mediated inhibition is released. We propose that all PAKs contain cell-cell boundary-targeting motifs but that the variable region prevents type I PAK accumulation at junctions. This highlights the importance of this poorly conserved, largely disordered region in PAK regulation and raises the possibility that variable region inhibition may be released by cellular signals.
Asunto(s)
Uniones Intercelulares/metabolismo , Proteínas Intrínsecamente Desordenadas/química , Señales de Clasificación de Proteína , Quinasas p21 Activadas/metabolismo , Dominio Catalítico , Línea Celular Tumoral , Secuencia Conservada , Células HEK293 , Humanos , Unión Proteica , Transporte de Proteínas , Proteína de Unión al GTP cdc42/metabolismo , Quinasas p21 Activadas/químicaRESUMEN
The integrin-associated adaptor proteins integrin-linked kinase (ILK) and kindlin-2 play central roles in integrin signaling and control of cell morphology. A direct ILK-kindlin-2 interaction is conserved across species and involves the F2PH subdomain of kindlin-2 and the pseudokinase domain (pKD) of ILK. However, complete understanding of the ILK-kindlin-2 interaction and its role in integrin-mediated signaling has been impeded by difficulties identifying the binding site for kindlin-2 on ILK. We used conservation-guided mapping to dissect the interaction between ILK and kindlin-2 and identified a previously unknown binding site for kindlin-2 on the C-lobe of the pKD of ILK. Mutations at this site inhibit binding to kindlin-2 while maintaining structural integrity of the pKD. Importantly, kindlin-binding-defective ILK mutants exhibit impaired focal adhesion localization and fail to fully rescue the spreading defects seen in ILK knockdown cells. Furthermore, kindlin-2 mutants with impaired ILK binding are also unable to fully support cell spreading. Thus, the interaction between ILK and kindlin-2 is critical for cell spreading and focal adhesion localization, representing a key signaling axis downstream of integrins.This article has an associated First Person interview with the first author of the paper.
Asunto(s)
Adhesiones Focales/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Neoplasias/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Secuencia de Aminoácidos , Adhesión Celular , Humanos , Proteínas de la Membrana/genética , Transducción de SeñalRESUMEN
Integrin conformational dynamics are critical to their receptor and signaling functions in many cellular processes, including spreading, adhesion, and migration. However, assessing integrin conformations is both experimentally and computationally challenging because of limitations in resolution and dynamic sampling. Thus, structural changes that underlie transitions between conformations are largely unknown. Here, focusing on integrin αvß3, we developed a modified form of the coarse-grained heterogeneous elastic network model (hENM), which allows sampling conformations at the onset of activation by formally separating local fluctuations from global motions. Both local fluctuations and global motions are extracted from all-atom molecular dynamics simulations of the full-length αvß3 bent integrin conformer, but whereas the former are incorporated in the hENM as effective harmonic interactions between groups of residues, the latter emerge by systematically identifying and treating weak interactions between long-distance domains with flexible and anharmonic connections. The new hENM model allows integrins and single-point mutant integrins to explore various conformational states, including the initiation of separation between α- and ß-subunit cytoplasmic regions, headpiece extension, and legs opening.
Asunto(s)
Integrinas/química , Integrinas/metabolismo , Simulación de Dinámica Molecular , Integrinas/genética , Mutación , Conformación ProteicaRESUMEN
Bromodomain and extraterminal domain protein inhibitors (BETi) hold great promise as a novel class of cancer therapeutics. Because acquired resistance typically limits durable responses to targeted therapies, it is important to understand mechanisms by which tumor cells adapt to BETi. Here, through pooled shRNA screening of colorectal cancer cells, we identified tripartite motif-containing protein 33 (TRIM33) as a factor promoting sensitivity to BETi. We demonstrate that loss of TRIM33 reprograms cancer cells to a more resistant state through at least two mechanisms. TRIM33 silencing attenuates down-regulation of MYC in response to BETi. Moreover, loss of TRIM33 enhances TGF-ß receptor expression and signaling, and blocking TGF-ß receptor activity potentiates the antiproliferative effect of BETi. These results describe a mechanism for BETi resistance and suggest that combining inhibition of TGF-ß signaling with BET bromodomain inhibition may offer new therapeutic benefits.
Asunto(s)
Azepinas/farmacología , Proteínas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-myc/metabolismo , Factores de Transcripción/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Triazoles/farmacología , Azepinas/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Resistencia a Medicamentos/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células HCT116 , Células HEK293 , Humanos , Estructura Molecular , Proteínas/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Interferencia de ARN , Receptores de Factores de Crecimiento Transformadores beta/genética , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Factores de Transcripción/genética , Factor de Crecimiento Transformador beta/genética , Triazoles/químicaRESUMEN
Binding of ICAP1 (integrin cytoplasmic domain-associated protein-1) to the cytoplasmic tails of ß1 integrins inhibits integrin activation. ICAP1 also binds to KRIT1 (Krev interaction trapped-1), a protein whose loss of function leads to cerebral cavernous malformation, a cerebrovascular dysplasia occurring in up to 0.5% of the population. We previously showed that KRIT1 functions as a switch for ß1 integrin activation by antagonizing ICAP1-mediated inhibition of integrin activation. Here we use overexpression studies, mutagenesis, and flow cytometry to show that ICAP1 contains a functional nuclear localization signal and that nuclear localization impairs the ability of ICAP1 to suppress integrin activation. Moreover, we find that ICAP1 drives the nuclear localization of KRIT1 in a manner dependent upon a direct ICAP1/KRIT1 interaction. Thus, nuclear-cytoplasmic shuttling of ICAP1 influences both integrin activation and KRIT1 localization, presumably impacting nuclear functions of KRIT1.
Asunto(s)
Núcleo Celular/metabolismo , Integrina beta1/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Transporte Activo de Núcleo Celular/fisiología , Proteínas Adaptadoras Transductoras de Señales , Animales , Células CHO , Núcleo Celular/genética , Cricetinae , Cricetulus , Células HEK293 , Humanos , Integrina beta1/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Proteína KRIT1 , Proteínas de la Membrana/genética , Proteínas Asociadas a Microtúbulos/genética , Proteínas Proto-Oncogénicas/genéticaRESUMEN
The six serine/threonine kinases in the p21-activated kinase (PAK) family are important regulators of cell adhesion, motility and survival. PAK6, which is overexpressed in prostate cancer, was recently reported to localize to cell-cell adhesions and to drive epithelial cell colony escape. Here we report that PAK6 targeting to cell-cell adhesions occurs through its N-terminus, requiring both its Cdc42/Rac interactive binding (CRIB) domain and an adjacent polybasic region for maximal targeting efficiency. We find PAK6 localization to cell-cell adhesions is Cdc42-dependent, as Cdc42 knockdown inhibits PAK6 targeting to cell-cell adhesions. We further find the ability of PAK6 to drive epithelial cell colony escape requires kinase activity and is disrupted by mutations that perturb PAK6 cell-cell adhesion targeting. Finally, we demonstrate that all type II PAKs (PAK4, PAK5 and PAK6) target to cell-cell adhesions, albeit to differing extents, but PAK1 (a type I PAK) does not. Notably, the ability of a PAK isoform to drive epithelial colony escape correlates with its targeting to cell-cell adhesions. We conclude that PAKs have a broader role in the regulation of cell-cell adhesions than previously appreciated.
Asunto(s)
Células Epiteliales/fisiología , Proteína de Unión al GTP cdc42/fisiología , Quinasas p21 Activadas/metabolismo , Secuencia de Aminoácidos , Antígenos CD , Cadherinas/metabolismo , Adhesión Celular , Línea Celular Tumoral , Células HEK293 , Humanos , Uniones Intercelulares/enzimología , Datos de Secuencia Molecular , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Señales de Clasificación de Proteína , Transporte de ProteínasRESUMEN
Here we show that dynamin 2 (Dnm2) is essential for angiogenesis in vitro and in vivo. In cultured endothelial cells lacking Dnm2, vascular endothelial growth factor (VEGF) signaling and receptor levels are augmented whereas cell migration and morphogenesis are impaired. Mechanistically, the loss of Dnm2 increases focal adhesion size and the surface levels of multiple integrins and reduces the activation state of ß1 integrin. In vivo, the constitutive or inducible loss of Dnm2 in endothelium impairs branching morphogenesis and promotes the accumulation of ß1 integrin at sites of failed angiogenic sprouting. Collectively, our data show that Dnm2 uncouples VEGF signaling from function and coordinates the endocytic turnover of integrins in a manner that is crucially important for angiogenesis in vitro and in vivo.
Asunto(s)
Vasos Sanguíneos/embriología , Dinamina II/fisiología , Endocitosis/genética , Integrinas/metabolismo , Neovascularización Fisiológica/genética , Factor A de Crecimiento Endotelial Vascular/fisiología , Animales , Animales Recién Nacidos , Vasos Sanguíneos/crecimiento & desarrollo , Células Cultivadas , Dinamina II/genética , Embrión de Mamíferos , Femenino , Células Endoteliales de la Vena Umbilical Humana/fisiología , Humanos , Masculino , Ratones , Ratones Transgénicos , Transducción de Señal/fisiologíaRESUMEN
Talin serves an essential function during integrin-mediated adhesion in linking integrins to actin via the intracellular adhesion complex. In addition, the N-terminal head domain of talin regulates the affinity of integrins for their ECM-ligands, a process known as inside-out activation. We previously showed that in Drosophila, mutating the integrin binding site in the talin head domain resulted in weakened adhesion to the ECM. Intriguingly, subsequent studies showed that canonical inside-out activation of integrin might not take place in flies. Consistent with this, a mutation in talin that specifically blocks its ability to activate mammalian integrins does not significantly impinge on talin function during fly development. Here, we describe results suggesting that the talin head domain reinforces and stabilizes the integrin adhesion complex by promoting integrin clustering distinct from its ability to support inside-out activation. Specifically, we show that an allele of talin containing a mutation that disrupts intramolecular interactions within the talin head attenuates the assembly and reinforcement of the integrin adhesion complex. Importantly, we provide evidence that this mutation blocks integrin clustering in vivo. We propose that the talin head domain is essential for regulating integrin avidity in Drosophila and that this is crucial for integrin-mediated adhesion during animal development.
Asunto(s)
Adhesión Celular/genética , Desarrollo Embrionario/genética , Integrinas/genética , Talina/genética , Alelos , Animales , Membrana Celular/genética , Membrana Celular/metabolismo , Drosophila melanogaster/embriología , Embrión no Mamífero , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Recuperación de Fluorescencia tras Fotoblanqueo , Integrinas/metabolismo , Mutación Puntual , Estructura Terciaria de Proteína , Talina/metabolismoRESUMEN
Integrins are heterodimeric α/ß extracellular matrix adhesion receptors that couple physically to the actin cytoskeleton and regulate kinase signaling pathways to control cytoskeletal remodeling and adhesion complex formation and disassembly. ß1 integrins signal through the Abl2/Arg (Abl-related gene) nonreceptor tyrosine kinase to control fibroblast cell motility, neuronal dendrite morphogenesis and stability, and cancer cell invasiveness, but the molecular mechanisms by which integrin ß1 activates Arg are unknown. We report here that the Arg kinase domain interacts directly with a lysine-rich membrane-proximal segment in the integrin ß1 cytoplasmic tail, that Arg phosphorylates the membrane-proximal Tyr-783 in the ß1 tail, and that the Arg Src homology domain then engages this phosphorylated region in the tail. We show that these interactions mediate direct binding between integrin ß1 and Arg in vitro and in cells and activate Arg kinase activity. These findings provide a model for understanding how ß1-containing integrins interact with and activate Abl family kinases.
Asunto(s)
Integrina beta1/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Secuencia de Aminoácidos , Dominio Catalítico , Activación Enzimática , Células HEK293 , Humanos , Integrina beta1/química , Datos de Secuencia Molecular , Fosforilación , Dominios y Motivos de Interacción de Proteínas , Mapeo de Interacción de Proteínas , Procesamiento Proteico-Postraduccional , Proteínas Tirosina Quinasas/químicaRESUMEN
Vascular remodeling is essential for tissue repair and is regulated by multiple factors, including thrombospondin-2 (TSP2) and hypoxia/VEGF-induced activation of Akt. In contrast to TSP2 knock-out (KO) mice, Akt1 KO mice have elevated TSP2 expression and delayed tissue repair. To investigate the contribution of increased TSP2 to Akt1 KO mice phenotypes, we generated Akt1/TSP2 double KO (DKO) mice. Full-thickness excisional wounds in DKO mice healed at an accelerated rate when compared with Akt1 KO mice. Isolated dermal Akt1 KO fibroblasts expressed increased TSP2 and displayed altered morphology and defects in migration and adhesion. These defects were rescued in DKO fibroblasts or after TSP2 knockdown. Conversely, the addition of exogenous TSP2 to WT cells induced cell morphology and migration rates that were similar to those of Akt1 KO cells. Akt1 KO fibroblasts displayed reduced adhesion to fibronectin with manganese stimulation when compared with WT and DKO cells, revealing an Akt1-dependent role for TSP2 in regulating integrin-mediated adhesions; however, this effect was not due to changes in ß1 integrin surface expression or activation. Consistent with these results, Akt1 KO fibroblasts displayed reduced Rac1 activation that was dependent upon expression of TSP2 and could be rescued by a constitutively active Rac mutant. Our observations show that repression of TSP2 expression is a critical aspect of Akt1 function in tissue repair.
Asunto(s)
Fibroblastos/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Piel/metabolismo , Trombospondinas/genética , Heridas no Penetrantes/genética , Animales , Movimiento Celular , Fibroblastos/patología , Regulación de la Expresión Génica , Prueba de Complementación Genética , Integrina beta1/genética , Integrina beta1/metabolismo , Ratones , Ratones Noqueados , Neuropéptidos/genética , Neuropéptidos/metabolismo , Óxido Nítrico Sintasa de Tipo III/genética , Óxido Nítrico Sintasa de Tipo III/metabolismo , Cultivo Primario de Células , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/deficiencia , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transducción de Señal , Piel/lesiones , Piel/patología , Trombospondinas/deficiencia , Cicatrización de Heridas/genética , Heridas no Penetrantes/metabolismo , Heridas no Penetrantes/patología , Proteína de Unión al GTP rac1/genética , Proteína de Unión al GTP rac1/metabolismoRESUMEN
Loss-of-function mutations in genes encoding KRIT1 (also known as CCM1), CCM2 (also known as OSM and malcavernin) or PDCD10 (also known as CCM3) cause cerebral cavernous malformations (CCMs). These abnormalities are characterized by dilated leaky blood vessels, especially in the neurovasculature, that result in increased risk of stroke, focal neurological defects and seizures. The three CCM proteins can exist in a trimeric complex, and each of these essential multi-domain adaptor proteins also interacts with a range of signaling, cytoskeletal and adaptor proteins, presumably accounting for their roles in a range of basic cellular processes including cell adhesion, migration, polarity and apoptosis. In this Cell Science at a Glance article and the accompanying poster, we provide an overview of current models of CCM protein function focusing on how known protein-protein interactions might contribute to cellular phenotypes and highlighting gaps in our current understanding.
Asunto(s)
Neoplasias del Sistema Nervioso Central/metabolismo , Hemangioma Cavernoso del Sistema Nervioso Central/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Permeabilidad Capilar , Proteínas Portadoras/metabolismo , Neoplasias del Sistema Nervioso Central/irrigación sanguínea , Hemangioma Cavernoso del Sistema Nervioso Central/irrigación sanguínea , Humanos , Proteína KRIT1 , Proteínas de la Membrana/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Transducción de Señal , Proteínas de Unión al GTP rho/metabolismoRESUMEN
Kindlins are essential FERM-domain-containing focal adhesion (FA) proteins required for proper integrin activation and signaling. Despite the widely accepted importance of each of the three mammalian kindlins in cell adhesion, the molecular basis for their function has yet to be fully elucidated, and the functional differences between isoforms have generally not been examined. Here, we report functional differences between kindlin-2 and -3 (also known as FERMT2 and FERMT3, respectively); GFP-tagged kindlin-2 localizes to FAs whereas kindlin-3 does not, and kindlin-2, but not kindlin-3, can rescue α5ß1 integrin activation defects in kindlin-2-knockdown fibroblasts. Using chimeric kindlins, we show that the relatively uncharacterized kindlin-2 F2 subdomain drives FA targeting and integrin activation. We find that the integrin-linked kinase (ILK)-PINCH-parvin complex binds strongly to the kindlin-2 F2 subdomain but poorly to that of kindlin-3. Using a point-mutated kindlin-2, we establish that efficient kindlin-2-mediated integrin activation and FA targeting require binding to the ILK complex. Thus, ILK-complex binding is crucial for normal kindlin-2 function and differential ILK binding contributes to kindlin isoform specificity.
Asunto(s)
Adhesiones Focales/metabolismo , Integrinas/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Secuencia de Aminoácidos , Animales , Células CHO , Cricetulus , Células HEK293 , Humanos , Ratones , Datos de Secuencia Molecular , Células 3T3 NIH , Isoformas de Proteínas , Transducción de SeñalRESUMEN
Focal adhesions are macromolecular complexes that connect the actin cytoskeleton to the extracellular matrix. Dynamic turnover of focal adhesions is crucial for cell migration. Paxillin is a multi-adaptor protein that plays an important role in regulating focal adhesion dynamics. Here, we identify TRIM15, a member of the tripartite motif protein family, as a paxillin-interacting factor and a component of focal adhesions. TRIM15 localizes to focal contacts in a myosin-II-independent manner by an interaction between its coiled-coil domain and the LD2 motif of paxillin. Unlike other focal adhesion proteins, TRIM15 is a stable focal adhesion component with restricted mobility due to its ability to form oligomers. TRIM15-depleted cells display impaired cell migration and reduced focal adhesion disassembly rates, in addition to enlarged focal adhesions. Thus, our studies demonstrate a cellular function for TRIM15 as a regulatory component of focal adhesion turnover and cell migration.
Asunto(s)
Proteínas Portadoras/metabolismo , Adhesiones Focales/metabolismo , Antígenos de Histocompatibilidad/metabolismo , Animales , Proteínas Portadoras/genética , Movimiento Celular , Adhesiones Focales/química , Adhesiones Focales/genética , Antígenos de Histocompatibilidad/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular , Cinética , Ratones , Paxillin/genética , Paxillin/metabolismo , Unión Proteica , Transporte de Proteínas , Proteínas de Motivos TripartitosRESUMEN
Integrins are heterodimeric cell surface adhesion receptors essential for multicellular life. They connect cells to the extracellular environment and transduce chemical and mechanical signals to and from the cell. Intracellular proteins that bind the integrin cytoplasmic tail regulate integrin engagement of extracellular ligands as well as integrin localization and trafficking. Cytoplasmic integrin-binding proteins also function downstream of integrins, mediating links to the cytoskeleton and to signaling cascades that impact cell motility, growth, and survival. Here, we review key integrin-interacting proteins and their roles in regulating integrin activity, localization, and signaling.