Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
NMR Biomed ; : e5148, 2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38556903

RESUMEN

Intravoxel incoherent motion (IVIM) MRI has emerged as a valuable technique for the assessment of tissue characteristics and perfusion. However, there is limited knowledge about the relationship between IVIM-derived measures and changes at the level of the vascular network. In this study, we investigated the potential use of IVIM MRI as a noninvasive tool for measuring changes in cerebral vascular density. Variations in quantitative immunohistochemical measurements of the vascular density across different regions in the rat brain (cortex, corpus callosum, hippocampus, thalamus, and hypothalamus) were related to the pseudo-diffusion coefficient D* and the flowing blood fraction f in healthy Wistar rats. We assessed whether region-wise differences in the vascular density are reflected by variations in the IVIM measurements and found a significant positive relationship with the pseudo-diffusion coefficient (p < 0.05, ß = 0.24). The effect of cerebrovascular alterations, such as blood-brain barrier (BBB) disruption on the perfusion-related IVIM parameters, is not well understood. Therefore, we investigated the effect of BBB disruption on the IVIM measures in a rat model of metabolic and vascular comorbidities (ZSF1 obese rat) and assessed whether this affects the relationship between the cerebral vascular density and the noninvasive IVIM measurements. We observed increased vascular permeability without detecting any differences in diffusivity, suggesting that BBB leakage is present before changes in the tissue integrity. We observed no significant difference in the relationship between cerebral vascular density and the IVIM measurements in our model of comorbidities compared with healthy normotensive rats.

2.
Front Cardiovasc Med ; 10: 1147462, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37332588

RESUMEN

As our imaging capability increase, so does our need for appropriate image quantification tools. Quantitative Vascular Analysis Tool (Q-VAT) is an open-source software, written for Fiji (ImageJ), that perform automated analysis and quantification on large two-dimensional images of whole tissue sections. Importantly, it allows separation of the vessel measurement based on diameter, allowing the macro- and microvasculature to be quantified separately. To enable analysis of entire tissue sections on regular laboratory computers, the vascular network of large samples is analyzed in a tile-wise manner, significantly reducing labor and bypassing several limitations related to manual quantification. Double or triple-stained slides can be analyzed, with a quantification of the percentage of vessels where the staining's overlap. To demonstrate the versatility, we applied Q-VAT to obtain morphological read-outs of the vasculature network in microscopy images of whole-mount immuno-stained sections of various mouse tissues.

3.
Diagnostics (Basel) ; 11(6)2021 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-34064194

RESUMEN

Alterations to the cerebral microcirculation have been recognized to play a crucial role in the development of neurodegenerative disorders. However, the exact role of the microvascular alterations in the pathophysiological mechanisms often remains poorly understood. The early detection of changes in microcirculation and cerebral blood flow (CBF) can be used to get a better understanding of underlying disease mechanisms. This could be an important step towards the development of new treatment approaches. Animal models allow for the study of the disease mechanism at several stages of development, before the onset of clinical symptoms, and the verification with invasive imaging techniques. Specifically, pre-clinical magnetic resonance imaging (MRI) is an important tool for the development and validation of MRI sequences under clinically relevant conditions. This article reviews MRI strategies providing indirect non-invasive measurements of microvascular changes in the rodent brain that can be used for early detection and characterization of neurodegenerative disorders. The perfusion MRI techniques: Dynamic Contrast Enhanced (DCE), Dynamic Susceptibility Contrast Enhanced (DSC) and Arterial Spin Labeling (ASL), will be discussed, followed by less established imaging strategies used to analyze the cerebral microcirculation: Intravoxel Incoherent Motion (IVIM), Vascular Space Occupancy (VASO), Steady-State Susceptibility Contrast (SSC), Vessel size imaging, SAGE-based DSC, Phase Contrast Flow (PC) Quantitative Susceptibility Mapping (QSM) and quantitative Blood-Oxygenation-Level-Dependent (qBOLD). We will emphasize the advantages and limitations of each strategy, in particular on applications for high-field MRI in the rodent's brain.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA