Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
PLoS Pathog ; 17(9): e1009840, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34499689

RESUMEN

COVID-19 vaccines based on the Spike protein of SARS-CoV-2 have been developed that appear to be largely successful in stopping infection. However, therapeutics that can help manage the disease are still required until immunity has been achieved globally. The identification of repurposed drugs that stop SARS-CoV-2 replication could have enormous utility in stemming the disease. Here, using a nano-luciferase tagged version of the virus (SARS-CoV-2-ΔOrf7a-NLuc) to quantitate viral load, we evaluated a range of human cell types for their ability to be infected and support replication of the virus, and performed a screen of 1971 FDA-approved drugs. Hepatocytes, kidney glomerulus, and proximal tubule cells were particularly effective in supporting SARS-CoV-2 replication, which is in-line with reported proteinuria and liver damage in patients with COVID-19. Using the nano-luciferase as a measure of virus replication we identified 35 drugs that reduced replication in Vero cells and human hepatocytes when treated prior to SARS-CoV-2 infection and found amodiaquine, atovaquone, bedaquiline, ebastine, LY2835219, manidipine, panobinostat, and vitamin D3 to be effective in slowing SARS-CoV-2 replication in human cells when used to treat infected cells. In conclusion, our study has identified strong candidates for drug repurposing, which could prove powerful additions to the treatment of COVID.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Descubrimiento de Drogas/métodos , Reposicionamiento de Medicamentos , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/fisiología , Animales , Biomarcadores , Línea Celular , Chlorocebus aethiops , Hepatocitos/virología , Humanos , Luciferasas/farmacología , Nanoestructuras , SARS-CoV-2/genética , Células Vero , Replicación Viral/efectos de los fármacos
2.
FASEB J ; 33(6): 7479-7489, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30888851

RESUMEN

Dysregulation of collagen synthesis is associated with disease progression in cancer and fibrosis. Collagen synthesis is coordinated with the circadian clock, which in cancer cells is, curiously, deregulated by endoplasmic reticulum (ER) stress. We hypothesized interplay between circadian rhythm, collagen synthesis, and ER stress in normal cells. Here we show that fibroblasts with ER stress lack circadian rhythms in gene expression upon clock-synchronizing time cues. Overexpression of binding immunoglobulin protein (BiP) or treatment with chemical chaperones strengthens the oscillation amplitude of circadian rhythms. The significance of these findings was explored in tendon, where we showed that BiP expression is ramped preemptively prior to a surge in collagen synthesis at night, thereby preventing protein misfolding and ER stress. In turn, this forestalls activation of the unfolded protein response in order for circadian rhythms to be maintained. Thus, targeting ER stress could be used to modulate circadian rhythm and restore collagen homeostasis in disease.-Pickard, A., Chang, J., Alachkar, N., Calverley, B., Garva, R., Arvan, P., Meng, Q.-J., Kadler, K. E. Preservation of circadian rhythms by the protein folding chaperone, BiP.


Asunto(s)
Ritmo Circadiano , Proteínas de Choque Térmico/metabolismo , Pliegue de Proteína , Animales , Retículo Endoplásmico/metabolismo , Chaperón BiP del Retículo Endoplásmico , Homeostasis , Ratones , Ratones Transgénicos
3.
bioRxiv ; 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38766096

RESUMEN

Collagen fibrils are the primary supporting scaffold of vertebrate tissues but how they are assembled is unclear. Here, using CRISPR-tagging of type I collagen and SILAC labelling, we elucidate the cellular mechanism for the spatiotemporal assembly of collagen fibrils, in cultured fibroblasts. Our findings reveal multifaceted trafficking of collagen, including constitutive secretion, intracellular pooling, and plasma membrane-directed fibrillogenesis. Notably, we differentiate the processes of collagen secretion and fibril assembly and identify the crucial involvement of endocytosis in regulating fibril formation. By employing Col1a1 knockout fibroblasts we demonstrate the incorporation of exogenous collagen into nucleation sites at the plasma membrane through these recycling mechanisms. Our study sheds light on the assembly process and its regulation in health and disease. Mass spectrometry data are available via ProteomeXchange with identifier PXD036794.

4.
Patterns (N Y) ; 4(8): 100800, 2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37602209

RESUMEN

We have developed a machine learning (ML) approach using Gaussian process (GP)-based spatial covariance (SCV) to track the impact of spatial-temporal mutational events driving host-pathogen balance in biology. We show how SCV can be applied to understanding the response of evolving covariant relationships linking the variant pattern of virus spread to pathology for the entire SARS-CoV-2 genome on a daily basis. We show that GP-based SCV relationships in conjunction with genome-wide co-occurrence analysis provides an early warning anomaly detection (EWAD) system for the emergence of variants of concern (VOCs). EWAD can anticipate changes in the pattern of performance of spread and pathology weeks in advance, identifying signatures destined to become VOCs. GP-based analyses of variation across entire viral genomes can be used to monitor micro and macro features responsible for host-pathogen balance. The versatility of GP-based SCV defines starting point for understanding nature's evolutionary path to complexity through natural selection.

5.
bioRxiv ; 2021 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-33564760

RESUMEN

COVID-19 vaccines based on the Spike protein of SARS-CoV-2 have been developed that appear to be largely successful in stopping infection. However, vaccine escape variants might arise leading to a re-emergence of COVID. In anticipation of such a scenario, the identification of repurposed drugs that stop SARS-CoV-2 replication could have enormous utility in stemming the disease. Here, using a nano-luciferase tagged version of the virus (SARS-CoV-2- DOrf7a-NLuc) to quantitate viral load, we evaluated a range of human cell types for their ability to be infected and support replication of the virus, and performed a screen of 1971 FDA-approved drugs. Hepatocytes, kidney glomerulus, and proximal tubule cells were particularly effective in supporting SARS-CoV-2 replication, which is in- line with reported proteinuria and liver damage in patients with COVID-19. We identified 35 drugs that reduced viral replication in Vero and human hepatocytes when treated prior to SARS-CoV-2 infection and found amodiaquine, atovaquone, bedaquiline, ebastine, LY2835219, manidipine, panobinostat, and vitamin D3 to be effective in slowing SARS-CoV-2 replication in human cells when used to treat infected cells. In conclusion, our study has identified strong candidates for drug repurposing, which could prove powerful additions to the treatment of COVID.

6.
Cells ; 9(9)2020 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-32927811

RESUMEN

The ability to quantitate a protein of interest temporally and spatially at subcellular resolution in living cells would generate new opportunities for research and drug discovery, but remains a major technical challenge. Here, we describe dynamic, high-sensitivity protein quantitation technique using NanoLuciferase (NLuc) tagging, which is effective across microscopy and multiwell platforms. Using collagen as a test protein, the CRISPR-Cas9-mediated introduction of nluc (encoding NLuc) into the Col1a2 locus enabled the simplification and miniaturisation of procollagen-I (PC-I) quantitation. Collagen was chosen because of the clinical interest in its dysregulation in cardiovascular and musculoskeletal disorders, and in fibrosis, which is a confounding factor in 45% of deaths, including those brought about by cancer. Collagen is also the cargo protein of choice for studying protein secretion because of its unusual shape and size. However, the use of overexpression promoters (which drowns out endogenous regulatory mechanisms) is often needed to achieve good signal/noise ratios in fluorescence microscopy of tagged collagen. We show that endogenous knock-in of NLuc, combined with its high brightness, negates the need to use exogenous promoters, preserves the circadian regulation of collagen synthesis and the responsiveness to TGF-ß, and enables time-lapse microscopy of intracellular transport compartments containing procollagen cargo. In conclusion, we demonstrate the utility of CRISPR-Cas9-mediated endogenous NLuc tagging to robustly quantitate extracellular, intracellular, and subcellular protein levels and localisation.


Asunto(s)
Sistemas CRISPR-Cas , Colágeno Tipo I , Animales , Colágeno Tipo I/análisis , Colágeno Tipo I/metabolismo , Luminiscencia , Ratones , Células 3T3 NIH
7.
Nat Cell Biol ; 22(1): 74-86, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31907414

RESUMEN

Collagen is the most abundant secreted protein in vertebrates and persists throughout life without renewal. The permanency of collagen networks contrasts with both the continued synthesis of collagen throughout adulthood and the conventional transcriptional/translational homeostatic mechanisms that replace damaged proteins with new copies. Here, we show circadian clock regulation of endoplasmic reticulum-to-plasma membrane procollagen transport by the sequential rhythmic expression of SEC61, TANGO1, PDE4D and VPS33B. The result is nocturnal procollagen synthesis and daytime collagen fibril assembly in mice. Rhythmic collagen degradation by CTSK maintains collagen homeostasis. This circadian cycle of collagen synthesis and degradation affects a pool of newly synthesized collagen, while maintaining the persistent collagen network. Disabling the circadian clock causes abnormal collagen fibrils and collagen accumulation, which are reduced in vitro by the NR1D1 and CRY1/2 agonists SR9009 and KL001, respectively. In conclusion, our study has identified a circadian clock mechanism of protein homeostasis wherein a sacrificial pool of collagen maintains tissue function.


Asunto(s)
Relojes Circadianos/fisiología , Colágeno/metabolismo , Homeostasis/fisiología , Vías Secretoras/fisiología , Animales , Translocador Nuclear del Receptor de Aril Hidrocarburo/efectos de los fármacos , Translocador Nuclear del Receptor de Aril Hidrocarburo/metabolismo , Carbazoles/farmacología , Colágeno/efectos de los fármacos , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/efectos de los fármacos , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/metabolismo , Matriz Extracelular/metabolismo , Ratones Transgénicos , Pirrolidinas/farmacología , Canales de Translocación SEC/efectos de los fármacos , Canales de Translocación SEC/metabolismo , Vías Secretoras/genética , Sulfonamidas/farmacología , Tiofenos/farmacología , Proteínas de Transporte Vesicular/efectos de los fármacos , Proteínas de Transporte Vesicular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA