Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Gynecol Oncol ; 185: 194-201, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38452634

RESUMEN

OBJECTIVE: Endometrial cancer (EndoCA) is the most common gynecologic cancer and incidence and mortality rate continue to increase. Despite well-characterized knowledge of EndoCA-defining mutations, no effective diagnostic or screening tests exist. To lay the foundation for testing development, our study focused on defining the prevalence of somatic mutations present in non-cancerous uterine tissue. METHODS: We obtained ≥8 uterine samplings, including separate endometrial and myometrial layers, from each of 22 women undergoing hysterectomy for non-cancer conditions. We ultra-deep sequenced (>2000× coverage) samples using a 125 cancer-relevant gene panel. RESULTS: All women harbored complex mutation patterns. In total, 308 somatic mutations were identified with mutant allele frequencies ranging up to 96.0%. These encompassed 56 unique mutations from 24 genes. The majority of samples possessed predicted functional cancer mutations but curiously no growth advantage over non-functional mutations was detected. Functional mutations were enriched with increasing patient age (p = 0.045) and BMI (p = 0.0007) and in endometrial versus myometrial layers (68% vs 39%, p = 0.0002). Finally, while the somatic mutation landscape shared similar mutation prevalence in key TCGA-defined EndoCA genes, notably PIK3CA, significant differences were identified, including NOTCH1 (77% vs 10%), PTEN (9% vs 61%), TP53 (0% vs 37%) and CTNNB1 (0% vs 26%). CONCLUSIONS: An important caveat for future liquid biopsy/DNA-based cancer diagnostics is the repertoire of shared and distinct mutation profiles between histologically unremarkable and EndoCA tissues. The lack of selection pressure between functional and non-functional mutations in histologically unremarkable uterine tissue may offer a glimpse into an unrecognized EndoCA protective mechanism.


Asunto(s)
Endometrio , Mutación , Humanos , Femenino , Persona de Mediana Edad , Endometrio/patología , Endometrio/metabolismo , Anciano , Neoplasias Endometriales/genética , Neoplasias Endometriales/patología , Adulto , Secuenciación de Nucleótidos de Alto Rendimiento
2.
Int J Gynecol Cancer ; 28(3): 479-485, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29324546

RESUMEN

OBJECTIVES: The objectives of this study were to assess if targeted investigation for tumor-specific mutations by ultradeep DNA sequencing of peritoneal washes of ovarian cancer patients after primary surgical debulking and chemotherapy, and clinically diagnosed as disease free, provides a more sensitive and specific method to assess actual treatment response and tailor future therapy and to compare this "molecular second look" with conventional cytology and histopathology-based findings. METHODS/MATERIALS: We identified 10 patients with advanced-stage, high-grade serous ovarian cancer who had undergone second-look laparoscopy and for whom DNA could be isolated from biobanked paired blood, primary and recurrent tumor, and second-look peritoneal washes. A targeted 56 gene cancer-relevant panel was used for next-generation sequencing (average coverage, >6500×). Mutations were validated using either digital droplet polymerase chain reaction (ddPCR) or Sanger sequencing. RESULTS: A total of 25 tumor-specific mutations were identified (median, 2/patient; range, 1-8). TP53 mutations were identified in at least 1 sample from all patients. All 5 pathology-based second-look positive patients were confirmed positive by molecular second look. Genetic analysis revealed that 3 of the 5 pathology-based negative second looks were actually positive. In the 2 patients, the second-look mutations were present in either the original primary or recurrent tumors. In the third, 2 high-frequency, novel frameshift mutations in MSH6 and HNF1A were identified. CONCLUSIONS: The molecular second look detects tumor-specific evidence of residual disease and provides genetic insight into tumor evolution and future recurrences beyond standard pathology. In the precision medicine era, detecting and genetically characterizing residual disease after standard treatment will be invaluable for improving patient outcomes.


Asunto(s)
Cistadenocarcinoma Seroso/genética , Neoplasias Ováricas/genética , Anciano , Alelos , Cistadenocarcinoma Seroso/patología , Análisis Mutacional de ADN , ADN de Neoplasias/genética , ADN de Neoplasias/aislamiento & purificación , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Persona de Mediana Edad , Mutación , Neoplasias Ováricas/patología , Medicina de Precisión/métodos , Prueba de Estudio Conceptual
3.
PLoS Med ; 13(12): e1002206, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28027320

RESUMEN

BACKGROUND: Endometrial cancer is the most common gynecologic malignancy, and its incidence and associated mortality are increasing. Despite the immediate need to detect these cancers at an earlier stage, there is no effective screening methodology or protocol for endometrial cancer. The comprehensive, genomics-based analysis of endometrial cancer by The Cancer Genome Atlas (TCGA) revealed many of the molecular defects that define this cancer. Based on these cancer genome results, and in a prospective study, we hypothesized that the use of ultra-deep, targeted gene sequencing could detect somatic mutations in uterine lavage fluid obtained from women undergoing hysteroscopy as a means of molecular screening and diagnosis. METHODS AND FINDINGS: Uterine lavage and paired blood samples were collected and analyzed from 107 consecutive patients who were undergoing hysteroscopy and curettage for diagnostic evaluation from this single-institution study. The lavage fluid was separated into cellular and acellular fractions by centrifugation. Cellular and cell-free DNA (cfDNA) were isolated from each lavage. Two targeted next-generation sequencing (NGS) gene panels, one composed of 56 genes and the other of 12 genes, were used for ultra-deep sequencing. To rule out potential NGS-based errors, orthogonal mutation validation was performed using digital PCR and Sanger sequencing. Seven patients were diagnosed with endometrial cancer based on classic histopathologic analysis. Six of these patients had stage IA cancer, and one of these cancers was only detectable as a microscopic focus within a polyp. All seven patients were found to have significant cancer-associated gene mutations in both cell pellet and cfDNA fractions. In the four patients in whom adequate tumor sample was available, all tumor mutations above a specific allele fraction were present in the uterine lavage DNA samples. Mutations originally only detected in lavage fluid fractions were later confirmed to be present in tumor but at allele fractions significantly less than 1%. Of the remaining 95 patients diagnosed with benign or non-cancer pathology, 44 had no significant cancer mutations detected. Intriguingly, 51 patients without histopathologic evidence of cancer had relatively high allele fraction (1.0%-30.4%), cancer-associated mutations. Participants with detected driver and potential driver mutations were significantly older (mean age mutated = 57.96, 95% confidence interval [CI]: 3.30-∞, mean age no mutations = 50.35; p-value = 0.002; Benjamini-Hochberg [BH] adjusted p-value = 0.015) and more likely to be post-menopausal (p-value = 0.004; BH-adjusted p-value = 0.015) than those without these mutations. No associations were detected between mutation status and race/ethnicity, body mass index, diabetes, parity, and smoking status. Long-term follow-up was not presently available in this prospective study for those women without histopathologic evidence of cancer. CONCLUSIONS: Using ultra-deep NGS, we identified somatic mutations in DNA extracted both from cell pellets and a never previously reported cfDNA fraction from the uterine lavage. Using our targeted sequencing approach, endometrial driver mutations were identified in all seven women who received a cancer diagnosis based on classic histopathology of tissue curettage obtained at the time of hysteroscopy. In addition, relatively high allele fraction driver mutations were identified in the lavage fluid of approximately half of the women without a cancer diagnosis. Increasing age and post-menopausal status were associated with the presence of these cancer-associated mutations, suggesting the prevalent existence of a premalignant landscape in women without clinical evidence of cancer. Given that a uterine lavage can be easily and quickly performed even outside of the operating room and in a physician's office-based setting, our findings suggest the future possibility of this approach for screening women for the earliest stages of endometrial cancer. However, our findings suggest that further insight into development of cancer or its interruption are needed before translation to the clinic.


Asunto(s)
ADN de Neoplasias , Neoplasias Endometriales/genética , Genoma , Mutación , Útero/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Estudios Transversales , Neoplasias Endometriales/patología , Femenino , Humanos , Persona de Mediana Edad , Estudios Prospectivos , Irrigación Terapéutica
4.
Am J Hum Genet ; 93(6): 1061-71, 2013 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-24268657

RESUMEN

Obesity is a major public health concern, and complementary research strategies have been directed toward the identification of the underlying causative gene mutations that affect the normal pathways and networks that regulate energy balance. Here, we describe an autosomal-recessive morbid-obesity syndrome and identify the disease-causing gene defect. The average body mass index of affected family members was 48.7 (range = 36.7-61.0), and all had features of the metabolic syndrome. Homozygosity mapping localized the disease locus to a region in 3q29; we designated this region the morbid obesity 1 (MO1) locus. Sequence analysis identified a homozygous nonsense mutation in CEP19, the gene encoding the ciliary protein CEP19, in all affected family members. CEP19 is highly conserved in vertebrates and invertebrates, is expressed in multiple tissues, and localizes to the centrosome and primary cilia. Homozygous Cep19-knockout mice were morbidly obese, hyperphagic, glucose intolerant, and insulin resistant. Thus, loss of the ciliary protein CEP19 in humans and mice causes morbid obesity and defines a target for investigating the molecular pathogenesis of this disease and potential treatments for obesity and malnutrition.


Asunto(s)
Proteínas de Ciclo Celular/genética , Silenciador del Gen , Obesidad Mórbida/genética , Adulto , Secuencia de Aminoácidos , Animales , Clonación Molecular , Consanguinidad , Secuencia Conservada , Modelos Animales de Enfermedad , Femenino , Orden Génico , Marcación de Gen , Estudios de Asociación Genética , Ligamiento Genético , Genotipo , Prueba de Tolerancia a la Glucosa , Humanos , Insulina/metabolismo , Resistencia a la Insulina/genética , Masculino , Ratones , Ratones Noqueados , Datos de Secuencia Molecular , Mutación , Obesidad Mórbida/diagnóstico , Linaje , Fenotipo , Mapeo Físico de Cromosoma , Transducción de Señal , Adulto Joven
5.
Am J Hum Genet ; 92(6): 1001-7, 2013 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-23731542

RESUMEN

Infantile myofibromatosis (IM) is a disorder of mesenchymal proliferation characterized by the development of nonmetastasizing tumors in the skin, muscle, bone, and viscera. Occurrence within families across multiple generations is suggestive of an autosomal-dominant (AD) inheritance pattern, but autosomal-recessive (AR) modes of inheritance have also been proposed. We performed whole-exome sequencing (WES) in members of nine unrelated families clinically diagnosed with AD IM to identify the genetic origin of the disorder. In eight of the families, we identified one of two disease-causing mutations, c.1978C>A (p.Pro660Thr) and c.1681C>T (p.Arg561Cys), in PDGFRB. Intriguingly, one family did not have either of these PDGFRB mutations but all affected individuals had a c.4556T>C (p.Leu1519Pro) mutation in NOTCH3. Our studies suggest that mutations in PDGFRB are a cause of IM and highlight NOTCH3 as a candidate gene. Further studies of the crosstalk between PDGFRB and NOTCH pathways may offer new opportunities to identify mutations in other genes that result in IM and is a necessary first step toward understanding the mechanisms of both tumor growth and regression and its targeted treatment.


Asunto(s)
Genes Dominantes , Mutación Missense , Miofibromatosis/congénito , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/genética , Secuencia de Aminoácidos , Secuencia de Bases , Femenino , Estudios de Asociación Genética , Humanos , Masculino , Miofibromatosis/genética , Linaje , Receptor Notch3 , Receptores Notch/genética , Análisis de Secuencia de ADN
6.
Skinmed ; 14(3): 221-4, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27502264

RESUMEN

An 11-year-old Tanzanian girl presented with diffuse verrucous lesions of varying morphology, scarring alopecia, and keloid scars over the face with a predilection for the ears. Physical examination revealed dark keratoderma and patches of hypopigmentation near the midline of the dorsal trunk (Figure 1a). Her forearms were densely covered by verrucous lesions with the exception of a clear linear patch on the dorsal aspect of the left forearm (Figure 1b). The perioral area was notable for white spires projecting from verrucous papules (Figure 1c) while the oral mucosa and teeth appeared normal on visual examination. The rest of her body, including the palms and soles, was covered by patchy, scaly lesions of varying severity.


Asunto(s)
Hipopigmentación/patología , Queloide/patología , Queratosis/patología , Nevo/patología , Poroqueratosis/patología , Alopecia/complicaciones , Alopecia/patología , Niño , Pabellón Auricular/patología , Cara/patología , Femenino , Humanos , Hipopigmentación/complicaciones , Queloide/complicaciones , Queratosis/complicaciones , Nevo/complicaciones , Poroqueratosis/complicaciones
7.
Am J Hum Genet ; 90(4): 614-27, 2012 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-22464254

RESUMEN

Diaphyseal medullary stenosis with malignant fibrous histiocytoma (DMS-MFH) is an autosomal-dominant syndrome characterized by bone dysplasia, myopathy, and bone cancer. We previously mapped the DMS-MFH tumor-suppressing-gene locus to chromosomal region 9p21-22 but failed to identify mutations in known genes in this region. We now demonstrate that DMS-MFH results from mutations in the most proximal of three previously uncharacterized terminal exons of the gene encoding methylthioadenosine phosphorylase, MTAP. Intriguingly, two of these MTAP exons arose from early and independent retroviral-integration events in primate genomes at least 40 million years ago, and since then, their genomic integration has gained a functional role. MTAP is a ubiquitously expressed homotrimeric-subunit enzyme critical to polyamine metabolism and adenine and methionine salvage pathways and was believed to be encoded as a single transcript from the eight previously described exons. Six distinct retroviral-sequence-containing MTAP isoforms, each of which can physically interact with archetype MTAP, have been identified. The disease-causing mutations occur within one of these retroviral-derived exons and result in exon skipping and dysregulated alternative splicing of all MTAP isoforms. Our results identify a gene involved in the development of bone sarcoma, provide evidence of the primate-specific evolution of certain parts of an existing gene, and demonstrate that mutations in parts of this gene can result in human disease despite its relatively recent origin.


Asunto(s)
Enfermedades del Desarrollo Óseo/genética , Neoplasias Óseas/genética , Genoma , Histiocitoma Fibroso Benigno/genética , Síndromes Neoplásicos Hereditarios/genética , Purina-Nucleósido Fosforilasa/genética , Retroviridae/genética , Empalme Alternativo/genética , Animales , Secuencia de Bases , Evolución Biológica , Cromosomas Humanos Par 9/genética , Exones , Humanos , Isoenzimas/genética , Datos de Secuencia Molecular , Distrofias Musculares/genética , Mutación , Primates/genética , Sarcoma/genética
8.
FASEB J ; 27(2): 432-6, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23134681

RESUMEN

Alternative splicing represents a unique post-transcriptional mechanism that increases the complexity of the eukaryotic proteome-generating protein isoforms whose functions can be novel, diverse, and/or even antagonistic when compared to its full-length transcript. The KLF family of genes consists of ≥17 members, which are involved in the regulation of numerous critical cellular processes, including differentiation, cell proliferation, growth-related signal transduction, angiogenesis, and apoptosis. Using a strategy based on RT-PCR, selective cloning, and promoter-based assays of cancer-relevant genes, we identify and characterize the existence of multiple biologically active KLF splice forms across the entire family of proteins. We demonstrate biological function for a number of these isoforms. Furthermore, we highlight a possible functional interaction between full-length KLF4 and one of its splice variants in up-regulating cellular proliferation. Taken together, this report identifies for the first time a more complete view of the genomic and proteomic breadth and complexity of the KLF transcription factor family, revealing the existence of highly expressed and biologically active isoforms previously uncharacterized. In essence, knowing that these KLF isoforms exist provides the first step toward understanding the roles of these genes in human health and disease.


Asunto(s)
Empalme Alternativo , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Regiones no Traducidas 3' , Regiones no Traducidas 5' , Secuencia de Bases , Femenino , Células HEK293 , Humanos , Factor 4 Similar a Kruppel , Células MCF-7 , Masculino , Modelos Biológicos , Datos de Secuencia Molecular , Familia de Multigenes , Embarazo , Regiones Promotoras Genéticas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Sitios de Empalme de ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Distribución Tisular , Transfección
9.
Artículo en Inglés | MEDLINE | ID: mdl-37848227

RESUMEN

Although the progressive histologic steps leading to endometrial cancer (EndoCA), the most common female reproductive tract malignancy, from endometrial hyperplasia are well-established, the molecular changes accompanying this malignant transformation in a single patient have never been described. We had the unique opportunity to investigate the paired histologic and molecular features associated with the 12-yr development of EndoCA in a postmenopausal female who could not undergo hysterectomy and instead underwent progesterone treatment. Using a specially designed 58-gene next-generation sequencing panel, we analyzed a total of 10 sequential biopsy samples collected over this time frame. A total of eight pathogenic/likely pathogenic mutations in seven genes, APC, ARID1A, CTNNB1, CDKN2A, KRAS, PTEN, and TP53, were identified. A PTEN nonsense mutation p.W111* was present in all samples analyzed except histologically normal endometrium. Apart from this PTEN mutation, the only other recurrent mutation was KRAS G12D, which was present in six biopsy samplings, including histologically normal tissue obtained at the patient's first visit but not detectable in the cancer. The PTEN p.W111* mutant allele fractions were lowest in benign, inactive endometrial glands (0.7%), highest in adenocarcinoma (36.9%), and, notably, were always markedly reduced following progesterone treatment. To our knowledge, this report provides the first molecular characterization of EndoCA development in a single patient. A single PTEN mutation was present throughout the 12 years of cancer development. Importantly, and with potential significance toward medical and nonsurgical management of EndoCA, progesterone treatments were consistently noted to markedly decrease PTEN mutant allele fractions to precancerous levels.


Asunto(s)
Neoplasias Endometriales , Progesterona , Humanos , Femenino , Hiperplasia , Proteínas Proto-Oncogénicas p21(ras)/genética , Neoplasias Endometriales/genética , Neoplasias Endometriales/terapia , Neoplasias Endometriales/patología , Endometrio , Mutación
10.
Artículo en Inglés | MEDLINE | ID: mdl-31628202

RESUMEN

Epithelial ovarian cancer (OvCa) is the most lethal female reproductive tract malignancy. A major clinical hurdle in patient management and treatment is that when using current surveillance technologies 80% of patients will be clinically diagnosed as having had a complete clinical response to primary therapy. In fact, the majority of women nonetheless develop disease recurrence within 18 mo. Thus, without more accurate surveillance protocols, the diagnostic question regarding OvCa recurrence remains framed as "when" rather than "if." With this background, we describe the case of a 61-yr-old female who presented with a 3-mo history of unexplained whole-body rash, which unexpectedly led to a diagnosis of and her treatment for OvCa. The rash resolved immediately following debulking surgery. Nearly 1 yr later, however, the rash reappeared, prompting the prospect of tumor recurrence and requirement for additional chemotherapy. To investigate this possibility, we undertook a genomics-based tumor surveillance approach using a targeted 56-gene NGS panel and biobanked tumor samples to develop personalized ctDNA biomarkers. Although tumor-specific TP53 and PTEN mutations were detectable in all originally collected tumor samples, pelvic washes, and blood samples, they were not detectable in any biosample collected beyond the first month of treatment. No additional chemotherapy was given. The rash spontaneously resolved. Now, 2 yr beyond the patient's original surgery, and in the face of continued negative ctDNA findings, the patient remains with no evidence of disease. As this single case report suggests, we believe for the first time that ctDNA can provide an additional layer of information to avoid overtreatment.


Asunto(s)
Carcinoma Epitelial de Ovario/genética , Exantema/genética , Biomarcadores de Tumor/genética , Carcinoma Epitelial de Ovario/diagnóstico , ADN Tumoral Circulante/genética , Exantema/etiología , Femenino , Humanos , Persona de Mediana Edad , Mutación , Recurrencia Local de Neoplasia/genética , Neoplasias Ováricas/genética , Ovario/patología , Fosfohidrolasa PTEN , Medicina de Precisión/métodos
11.
ACS Biomater Sci Eng ; 4(2): 463-467, 2018 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-32042890

RESUMEN

Platinum therapy represents first line of treatment in many malignancies but its high systemic toxicity limits the therapeutic dosage. Herein, we report the synthesis of carboplatin-like complexes with azide and alkyne functional groups and the formation of a platinum (II) - nuclear localization sequence peptide (Pt-NLS) hybrid to improve the import of platinum (II) complexes directly into the cell's nucleus. The Pt-NLS hybrid successfully enters cells and their nuclei, forming Pt-induced nuclear lesions. The in vitro efficacy of Pt-NLS is high, superior to native carboplatin at the same concentration. The methodology used is simple and cost-effective and most importantly can easily be extended to load the Pt (II) onto other supports, opening new possibilities for enhanced delivery of Pt (II) therapy.

12.
Clin Cancer Res ; 12(12): 3730-9, 2006 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-16778100

RESUMEN

PURPOSE: We investigated the role of the KLF6 tumor suppressor gene and its alternatively spliced isoform KLF6-SV1 in epithelial ovarian cancer (EOC). EXPERIMENTAL DESIGN: We first analyzed tumors from 68 females with EOC for KLF6 gene inactivation using fluorescent loss of heterozygosity (LOH) analysis and direct DNA sequencing and then defined changes in KLF6 and KLF6-SV1 expression levels by quantitative real-time PCR. We then directly tested the effect of KLF6 and KLF6-SV1 inhibition in SKOV-3 stable cell lines on cellular invasion and proliferation in culture and tumor growth, i.p. dissemination, ascites production, and angiogenesis in vivo using BALB/c nu/nu mice. All statistical tests were two sided. RESULTS: LOH was present in 59% of samples in a cell type-specific manner, highest in serous (72%) and endometrioid (75%) subtypes, but absent in clear cell tumors. LOH was significantly correlated with tumor stage and grade. In addition, KLF6 expression was decreased in tumors when compared with ovarian surface epithelial cells. In contrast, KLF6-SV1 expression was increased approximately 5-fold and was associated with increased tumor grade regardless of LOH status. Consistent with these findings, KLF6 silencing increased cellular and tumor growth, angiogenesis, and vascular endothelial growth factor expression, i.p. dissemination, and ascites production. Conversely, KLF6-SV1 down-regulation decreased cell proliferation and invasion and completely suppressed in vivo tumor formation. CONCLUSION: Our results show that KLF6 and KLF6-SV1 are associated with key clinical features of EOC and suggest that their therapeutic targeting may alter ovarian cancer growth, progression, and dissemination.


Asunto(s)
Factores de Transcripción de Tipo Kruppel/fisiología , Neoplasias Ováricas/genética , Proteínas Proto-Oncogénicas/fisiología , Adenocarcinoma/genética , Adenocarcinoma/patología , ADN de Neoplasias/genética , ADN de Neoplasias/aislamiento & purificación , Progresión de la Enfermedad , Femenino , Marcadores Genéticos , Humanos , Factor 6 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/genética , Pérdida de Heterocigocidad , Neoplasia Residual/genética , Neoplasias Ováricas/patología , Reacción en Cadena de la Polimerasa , Proteínas Proto-Oncogénicas/genética , ARN Neoplásico/genética , ARN Interferente Pequeño
13.
Cancer Res ; 65(13): 5761-8, 2005 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-15994951

RESUMEN

Prostate cancer is a leading cause of cancer death in men. Risk prognostication, treatment stratification, and the development of rational therapeutic strategies lag because the molecular mechanisms underlying the initiation and progression from primary to metastatic disease are unknown. Multiple lines of evidence now suggest that KLF6 is a key prostate cancer tumor suppressor gene including loss and/or mutation in prostate cancer tumors and cell lines and decreased KLF6 expression levels in recurrent prostate cancer samples. Most recently, we identified a common KLF6 germ line single nucleotide polymorphism that is associated with an increased relative risk of prostate cancer and the increased production of three alternatively spliced, dominant-negative KLF6 isoforms. Here we show that although wild-type KLF6 (wtKLF6) acts as a classic tumor suppressor, the single nucleotide polymorphism-increased splice isoform, KLF6 SV1, displays a markedly opposite effect on cell proliferation, colony formation, and invasion. In addition, whereas wtKLF6 knockdown increases tumor growth in nude mice >2-fold, short interfering RNA-mediated KLF6 SV1 inhibition reduces growth by approximately 50% and decreases the expression of a number of growth- and angiogenesis-related proteins. Together, these findings begin to highlight a dynamic and functional antagonism between wtKLF6 and its splice variant KLF6 SV1 in tumor growth and dissemination.


Asunto(s)
Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/genética , Transactivadores/antagonistas & inhibidores , Transactivadores/genética , Empalme Alternativo , Animales , Procesos de Crecimiento Celular/genética , Movimiento Celular/genética , Células Madre de Carcinoma Embrionario , Femenino , Regulación Neoplásica de la Expresión Génica , Silenciador del Gen , Humanos , Factor 6 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel , Masculino , Ratones , Ratones Endogámicos BALB C , Invasividad Neoplásica , Células Madre Neoplásicas/patología , Neovascularización Patológica/genética , Neovascularización Patológica/patología , Neoplasias de la Próstata/irrigación sanguínea , Isoformas de Proteínas , ARN Interferente Pequeño/genética , Transfección
14.
PLoS One ; 10(12): e0145754, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26717006

RESUMEN

BACKGROUND: High-grade serous ovarian and endometrial cancers are the most lethal female reproductive tract malignancies worldwide. In part, failure to treat these two aggressive cancers successfully centers on the fact that while the majority of patients are diagnosed based on current surveillance strategies as having a complete clinical response to their primary therapy, nearly half will develop disease recurrence within 18 months and the majority will die from disease recurrence within 5 years. Moreover, no currently used biomarkers or imaging studies can predict outcome following initial treatment. Circulating tumor DNA (ctDNA) represents a theoretically powerful biomarker for detecting otherwise occult disease. We therefore explored the use of personalized ctDNA markers as both a surveillance and prognostic biomarker in gynecologic cancers and compared this to current FDA-approved surveillance tools. METHODS AND FINDINGS: Tumor and serum samples were collected at time of surgery and then throughout treatment course for 44 patients with gynecologic cancers, representing 22 ovarian cancer cases, 17 uterine cancer cases, one peritoneal, three fallopian tube, and one patient with synchronous fallopian tube and uterine cancer. Patient/tumor-specific mutations were identified using whole-exome and targeted gene sequencing and ctDNA levels quantified using droplet digital PCR. CtDNA was detected in 93.8% of patients for whom probes were designed and levels were highly correlated with CA-125 serum and computed tomography (CT) scanning results. In six patients, ctDNA detected the presence of cancer even when CT scanning was negative and, on average, had a predictive lead time of seven months over CT imaging. Most notably, undetectable levels of ctDNA at six months following initial treatment was associated with markedly improved progression free and overall survival. CONCLUSIONS: Detection of residual disease in gynecologic, and indeed all cancers, represents a diagnostic dilemma and a potential critical inflection point in precision medicine. This study suggests that the use of personalized ctDNA biomarkers in gynecologic cancers can identify the presence of residual tumor while also more dynamically predicting response to treatment relative to currently used serum and imaging studies. Of particular interest, ctDNA was an independent predictor of survival in patients with ovarian and endometrial cancers. Earlier recognition of disease persistence and/or recurrence and the ability to stratify into better and worse outcome groups through ctDNA surveillance may open the window for improved survival and quality and life in these cancers.


Asunto(s)
Biomarcadores de Tumor/sangre , Biomarcadores de Tumor/genética , ADN de Neoplasias/sangre , ADN de Neoplasias/genética , Neoplasias de los Genitales Femeninos/sangre , Neoplasias de los Genitales Femeninos/genética , Adulto , Anciano , Neoplasias de la Mama/sangre , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/mortalidad , Antígeno Ca-125/sangre , Neoplasias Endometriales/sangre , Neoplasias Endometriales/tratamiento farmacológico , Neoplasias Endometriales/genética , Neoplasias Endometriales/mortalidad , Exoma/genética , Femenino , Neoplasias de los Genitales Femeninos/tratamiento farmacológico , Neoplasias de los Genitales Femeninos/mortalidad , Humanos , Persona de Mediana Edad , Mutación/genética , Recurrencia Local de Neoplasia/sangre , Recurrencia Local de Neoplasia/genética , Neoplasias Ováricas/sangre , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/mortalidad
15.
PLoS One ; 9(7): e102200, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25010049

RESUMEN

The statin family of cholesterol-lowering drugs is known to have pleiotropic properties which include anti-inflammatory and immunomodulatory effects. Statins exert their pleiotropic effects by altering expression of human immune regulators including pro-inflammatory cytokines. Previously we found that statins modulate virulence phenotypes of the human pathogen Pseudomonas aeruginosa, and sought to investigate if simvastatin could alter the host response to this organism in lung epithelial cells. Simvastatin increased the expression of the P. aeruginosa target genes KLF2, KLF6, IL-8 and CCL20. Furthermore, both simvastatin and P. aeruginosa induced alternative splicing of KLF6. The novel effect of simvastatin on wtKLF6 expression was found to be responsible for induction of the KLF6 regulated genes CCL20 and iNOS. Simvastatin also increased the adhesion of P. aeruginosa to host cells, without altering invasion or cytotoxicity. This study demonstrated that simvastatin had several novel effects on the pulmonary cellular immune response.


Asunto(s)
Regulación de la Expresión Génica/efectos de los fármacos , Infecciones por Pseudomonas/tratamiento farmacológico , Pseudomonas aeruginosa/efectos de los fármacos , Simvastatina/administración & dosificación , Empalme Alternativo/efectos de los fármacos , Línea Celular , Quimiocina CCL20/biosíntesis , Humanos , Inmunidad Celular/efectos de los fármacos , Interleucina-8/biosíntesis , Factor 6 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/biosíntesis , Pulmón/efectos de los fármacos , Pulmón/inmunología , Pulmón/patología , Proteínas Proto-Oncogénicas/biosíntesis , Infecciones por Pseudomonas/genética , Infecciones por Pseudomonas/patología , Pseudomonas aeruginosa/patogenicidad
16.
Neoplasia ; 16(1): 97-103, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24563622

RESUMEN

Retrospective studies have demonstrated that nearly 50% of patients with ovarian cancer with normal cancer antigen 125 (CA125) levels have persistent disease; however, prospectively distinguishing between patients is currently impossible. Here, we demonstrate that for one patient, with the first reported fibroblast growth factor receptor 2 (FGFR2) fusion transcript in ovarian cancer, circulating tumor DNA (ctDNA) is a more sensitive and specific biomarker than CA125, and it can also inform on a candidate therapeutic. For a 4-year period, during which the patient underwent primary debulking surgery and chemotherapy, tumor recurrences, and multiple chemotherapeutic regimens, blood samples were longitudinally collected and stored. Whereas postsurgical CA125 levels were elevated only three times for 28 measurements, the FGFR2 fusion ctDNA biomarker was readily detectable by quantitative real-time reverse transcription-polymerase chain reaction (PCR) in all of these same blood samples and in the tumor recurrences. Given the persistence of the FGFR2 fusion, we treated tumor cells derived from this patient and others with the FGFR2 inhibitor BGJ398. Only tumor cells derived from this patient were sensitive to FGFR2 inhibitor treatment. Using the same methodologic approach, we demonstrate in a second patient with a different fusion that PCR and agarose gel electrophoresis can also be used to identify tumor-specific DNA in the circulation. Taken together, we demonstrate that a relatively inexpensive, PCR-based ctDNA surveillance assay can outperform CA125 in identifying occult disease.


Asunto(s)
Antineoplásicos/farmacología , Biomarcadores de Tumor/metabolismo , ADN de Neoplasias/sangre , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Antígeno Ca-125/metabolismo , Línea Celular Tumoral , Proliferación Celular , Cisplatino/farmacología , Resistencia a Antineoplásicos , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Humanos , Células Neoplásicas Circulantes/metabolismo , Medicina de Precisión , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/metabolismo , Recurrencia
17.
J Ovarian Res ; 4: 18, 2011 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-22017790

RESUMEN

BACKGROUND: Glutathione peroxidase 3 (GPX3) is a selenocysteine-containing antioxidant enzyme that reacts with hydrogen peroxide and soluble fatty acid hydroperoxides, thereby helping to maintain redox balance within cells. Serum levels of GPX3 have been found to be reduced in various cancers including prostrate, thyroid, colorectal, breast and gastric cancers. Intriguingly, GPX3 has been reported to be upregulated in clear cell ovarian cancer tissues and thus may have implications in chemotherapeutic resistance. Since clear cell and serous subtypes of ovarian cancer represent two distinct disease entities, the aim of this study was to determine GPX3 levels in serous ovarian cancer patients and establish its potential as a biomarker for detection and/or surveillance of papillary serous ovarian cancer, the most frequent form of ovarian tumors in women. PATIENTS AND METHODS: Serum was obtained from 66 patients (median age: 62 years, range: 22-89) prior to surgery and 65 controls with a comparable age-range (median age: 53 years, range: 25-83). ELISA was used to determine the levels of serum GPX3. The Mann Whitney U test was performed to determine statistical significance between the levels of serum GPX3 in patients and controls. RESULTS: Serum levels of GPX3 were found to be significantly lower in patients than controls (p = 1 × 10-2). Furthermore, this was found to be dependent on the stage of disease. While levels in early stage (I/II) patients showed no significant difference when compared to controls, there was a significant reduction in late stage (III/IV, p = 9 × 10-4) and recurrent (p = 1 × 10-2) patients. There was a statistically significant reduction in levels of GPX3 between early and late stage (p = 5 × 10-4) as well as early and recurrent (p = 1 × 10-2) patients. Comparison of women and controls stratified to include only women at or above 50 years of age shows that the same trends were maintained and the differences became more statistically significant. CONCLUSIONS: Serum GPX3 levels are decreased in women with papillary serous ovarian cancer in a stage-dependent manner and also decreased in women with disease recurrence. Whether this decrease represents a general feature in response to the disease or a link to the progression of the cancer is unknown. Understanding this relationship may have clinical and therapeutic consequences for women with papillary serous adenocarcinoma.

18.
Int J Cancer ; 121(6): 1390-5, 2007 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-17514651

RESUMEN

Glioblastoma multiforme (GBM) is the most common and aggressive primary brain tumor and possesses a high incidence of 10p loss. The KLF6 (Kruppel-like transcription factor) tumor suppressor gene on 10p15 is inactivated by loss of heterozygosity (LOH) and/or somatic mutation in a number of human cancers and forced expression of KLF6 in GBM lines inhibits their growth and transformation. In addition, increased expression of its alternatively spliced, cytoplasmic isoform KLF6-SV1 has now been shown to play a role in cancer pathogenesis. On the basis of these findings we examined the role of KLF6 and KLF6-SV1 in the development and progression of GBM. LOH analysis of 17 primary GBM patient samples using KLF6-specific microsatellite markers revealed that 88.2% (15/17) had LOH of the KLF6 locus. Interestingly, no KLF6 somatic mutations were identified. RNA analysis revealed concomitant decreases in all primary GBM tumors (n = 11) by approximately 80% in KLF6 expression (p < 0.001) coupled with increased KLF6-SV1 expression (p < 0.001) when compared to normal astrocytes. To determine the biological relevance of these findings, we examined the effect of KLF6 expression and KLF6-SV1 knockdown in A235 and CRL2020 cell lines. Reconstitution of KLF6 decreased cell proliferation by almost 50%, whereas targeted KLF6 reduction increased cell proliferation 2.5-4.5 fold. Conversely, targeted KLF6-SV1 reduction decreased cell proliferation by 50%. Taken together, our findings demonstrate that KLF6 allelic imbalance and decreased KLF6 and increased KLF6-SV1 expression are common findings in primary GBM tumors, and these changes have antagonistic effects on the regulation of cellular proliferation in GBM cell lines.


Asunto(s)
Empalme Alternativo , Neoplasias Encefálicas/genética , Glioblastoma/genética , Factores de Transcripción de Tipo Kruppel/genética , Pérdida de Heterocigocidad , Proteínas Proto-Oncogénicas/genética , Western Blotting , Línea Celular Tumoral , Proliferación Celular , Expresión Génica , Genes Supresores de Tumor/fisiología , Humanos , Factor 6 Similar a Kruppel , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
19.
Int J Cancer ; 121(9): 1976-1983, 2007 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-17621627

RESUMEN

The Krüppel-like transcription factor (KLF6) gene is a tumor suppressor gene (TSG) reported to be dysregulated and inactivated through loss of heterozygosity (LOH) and/or somatic mutation in a number of major human cancers. The aim of the present study was to examine KLF6 gene status and expression in head and neck squamous cell carcinomas (HNSCC). A collection of 81 well-characterized oral and oropharyngeal HNSCC samples were analyzed for evidence of KLF6 LOH and mutation and differences in expression patterns between normal and cancerous tissues and these findings were correlated with clinicopathological variables. We also tested the effect of KLF6 inhibition in HNSCC cell lines on proliferation and p21 expression. LOH was found in approximately 30% of cases and was strongly correlated with cancer progression, tumor recurrence and decreased patient survival. Overall, median survival of patients with LOH was less than half (19 vs. 41 months, p=0.036, stratified on stage) than those without loss. Risk of death for patients with LOH was 8 times greater independent of tumor size, nodal status, tobacco smoking or treatment modality (HR 7.89, 95% CI: 1.9-32.4). Subsequent analyses revealed KLF6 mutations in only 2 of 20 samples, but altered subcellular protein localization in 64% of tumors. Targeted stable reduction of KLF6 in HNSCC cell lines increased cellular proliferation while decreasing p21 expression. Taken together, these findings suggest that KLF6 LOH represents a clinically-relevant biomarker predicting patient survival and tumor recurrence and that dysregulation of KLF6 function plays an important role in HNSCC progression.


Asunto(s)
Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patología , Neoplasias de Cabeza y Cuello/genética , Neoplasias de Cabeza y Cuello/patología , Factores de Transcripción de Tipo Kruppel/genética , Pérdida de Heterocigocidad/genética , Proteínas Proto-Oncogénicas/genética , Adulto , Anciano , Anciano de 80 o más Años , Carcinoma de Células Escamosas/metabolismo , Línea Celular Tumoral , Regulación hacia Abajo , Femenino , Regulación Neoplásica de la Expresión Génica , Neoplasias de Cabeza y Cuello/metabolismo , Humanos , Inmunohistoquímica , Factor 6 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/metabolismo , Masculino , Persona de Mediana Edad , Proteínas Proto-Oncogénicas/metabolismo , Recurrencia , Tasa de Supervivencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA