Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Nature ; 589(7841): 299-305, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33299181

RESUMEN

Linker histone H1 proteins bind to nucleosomes and facilitate chromatin compaction1, although their biological functions are poorly understood. Mutations in the genes that encode H1 isoforms B-E (H1B, H1C, H1D and H1E; also known as H1-5, H1-2, H1-3 and H1-4, respectively) are highly recurrent in B cell lymphomas, but the pathogenic relevance of these mutations to cancer and the mechanisms that are involved are unknown. Here we show that lymphoma-associated H1 alleles are genetic driver mutations in lymphomas. Disruption of H1 function results in a profound architectural remodelling of the genome, which is characterized by large-scale yet focal shifts of chromatin from a compacted to a relaxed state. This decompaction drives distinct changes in epigenetic states, primarily owing to a gain of histone H3 dimethylation at lysine 36 (H3K36me2) and/or loss of repressive H3 trimethylation at lysine 27 (H3K27me3). These changes unlock the expression of stem cell genes that are normally silenced during early development. In mice, loss of H1c and H1e (also known as H1f2 and H1f4, respectively) conferred germinal centre B cells with enhanced fitness and self-renewal properties, ultimately leading to aggressive lymphomas with an increased repopulating potential. Collectively, our data indicate that H1 proteins are normally required to sequester early developmental genes into architecturally inaccessible genomic compartments. We also establish H1 as a bona fide tumour suppressor and show that mutations in H1 drive malignant transformation primarily through three-dimensional genome reorganization, which leads to epigenetic reprogramming and derepression of developmentally silenced genes.


Asunto(s)
Transformación Celular Neoplásica/genética , Cromatina/química , Cromatina/genética , Histonas/deficiencia , Histonas/genética , Linfoma/genética , Linfoma/patología , Alelos , Animales , Linfocitos B/metabolismo , Linfocitos B/patología , Autorrenovación de las Células , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina/genética , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Silenciador del Gen , Genes Supresores de Tumor , Centro Germinal/patología , Histonas/metabolismo , Humanos , Linfoma/metabolismo , Ratones , Mutación , Células Madre/metabolismo , Células Madre/patología
2.
Nat Methods ; 20(8): 1174-1178, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37468619

RESUMEN

Multiplexed antibody-based imaging enables the detailed characterization of molecular and cellular organization in tissues. Advances in the field now allow high-parameter data collection (>60 targets); however, considerable expertise and capital are needed to construct the antibody panels employed by these methods. Organ mapping antibody panels are community-validated resources that save time and money, increase reproducibility, accelerate discovery and support the construction of a Human Reference Atlas.


Asunto(s)
Anticuerpos , Recursos Comunitarios , Humanos , Reproducibilidad de los Resultados , Diagnóstico por Imagen
3.
Nat Methods ; 19(3): 284-295, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34811556

RESUMEN

Tissues and organs are composed of distinct cell types that must operate in concert to perform physiological functions. Efforts to create high-dimensional biomarker catalogs of these cells have been largely based on single-cell sequencing approaches, which lack the spatial context required to understand critical cellular communication and correlated structural organization. To probe in situ biology with sufficient depth, several multiplexed protein imaging methods have been recently developed. Though these technologies differ in strategy and mode of immunolabeling and detection tags, they commonly utilize antibodies directed against protein biomarkers to provide detailed spatial and functional maps of complex tissues. As these promising antibody-based multiplexing approaches become more widely adopted, new frameworks and considerations are critical for training future users, generating molecular tools, validating antibody panels, and harmonizing datasets. In this Perspective, we provide essential resources, key considerations for obtaining robust and reproducible imaging data, and specialized knowledge from domain experts and technology developers.


Asunto(s)
Anticuerpos , Comunicación Celular , Diagnóstico por Imagen
4.
Nucleic Acids Res ; 50(22): 12739-12753, 2022 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-36533433

RESUMEN

Bacteria can adapt in response to numerous stress conditions. One such stress condition is zinc depletion. The zinc-sensing transcription factor Zur regulates the way numerous bacterial species respond to severe changes in zinc availability. Under zinc sufficient conditions, Zn-loaded Zur (Zn2-Zur) is well-known to repress transcription of genes encoding zinc uptake transporters and paralogues of a few ribosomal proteins. Here, we report the discovery and mechanistic basis for the ability of Zur to up-regulate expression of the ribosomal protein L31 in response to zinc in E. coli. Through genetic mutations and reporter gene assays, we find that Zur achieves the up-regulation of L31 through a double repression cascade by which Zur first represses the transcription of L31p, a zinc-lacking paralogue of L31, which in turn represses the translation of L31. Mutational analyses show that translational repression by L31p requires an RNA hairpin structure within the l31 mRNA and involves the N-terminus of the L31p protein. This work uncovers a new genetic network that allows bacteria to respond to host-induced nutrient limiting conditions through a sophisticated ribosomal protein switching mechanism.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Regulación Bacteriana de la Expresión Génica , Proteínas Bacterianas/metabolismo , Proteínas de Unión al ADN/genética , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Redes Reguladoras de Genes , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , ARN/metabolismo , Zinc/farmacología , Zinc/metabolismo , Interacciones Microbiota-Huesped
5.
J Proteome Res ; 21(5): 1299-1310, 2022 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-35413190

RESUMEN

A functional understanding of the human body requires structure-function studies of proteins at scale. The chemical structure of proteins is controlled at the transcriptional, translational, and post-translational levels, creating a variety of products with modulated functions within the cell. The term "proteoform" encapsulates this complexity at the level of chemical composition. Comprehensive mapping of the proteoform landscape in human tissues necessitates analytical techniques with increased sensitivity and depth of coverage. Here, we took a top-down proteomics approach, combining data generated using capillary zone electrophoresis (CZE) and nanoflow reversed-phase liquid chromatography (RPLC) hyphenated to mass spectrometry to identify and characterize proteoforms from the human lungs, heart, spleen, small intestine, and kidneys. CZE and RPLC provided complementary post-translational modification and proteoform selectivity, thereby enhancing the overall proteome coverage when used in combination. Of the 11,466 proteoforms identified in this study, 7373 (64%) were not reported previously. Large differences in the protein and proteoform level were readily quantified, with initial inferences about proteoform biology operative in the analyzed organs. Differential proteoform regulation of defensins, glutathione transferases, and sarcomeric proteins across tissues generate hypotheses about how they function and are regulated in human health and disease.


Asunto(s)
Proteómica , Espectrometría de Masas en Tándem , Cromatografía de Fase Inversa , Humanos , Procesamiento Proteico-Postraduccional , Proteoma/análisis , Proteómica/métodos , Espectrometría de Masas en Tándem/métodos
6.
J Proteome Res ; 21(1): 274-288, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34878788

RESUMEN

Methods of antibody detection are used to assess exposure or immunity to a pathogen. Here, we present Ig-MS, a novel serological readout that captures the immunoglobulin (Ig) repertoire at molecular resolution, including entire variable regions in Ig light and heavy chains. Ig-MS uses recent advances in protein mass spectrometry (MS) for multiparametric readout of antibodies, with new metrics like Ion Titer (IT) and Degree of Clonality (DoC) capturing the heterogeneity and relative abundance of individual clones without sequencing of B cells. We applied Ig-MS to plasma from subjects with severe and mild COVID-19 and immunized subjects after two vaccine doses, using the receptor-binding domain (RBD) of the spike protein of SARS-CoV-2 as the bait for antibody capture. Importantly, we report a new data type for human serology, that could use other antigens of interest to gauge immune responses to vaccination, pathogens, or autoimmune disorders.


Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Humanos , Espectrometría de Masas , Glicoproteína de la Espiga del Coronavirus/genética
7.
Angew Chem Int Ed Engl ; 61(29): e202200721, 2022 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-35446460

RESUMEN

Unraveling the complexity of biological systems relies on the development of new approaches for spatially resolved proteoform-specific analysis of the proteome. Herein, we employ nanospray desorption electrospray ionization mass spectrometry imaging (nano-DESI MSI) for the proteoform-selective imaging of biological tissues. Nano-DESI generates multiply charged protein ions, which is advantageous for their structural characterization using tandem mass spectrometry (MS/MS) directly on the tissue. Proof-of-concept experiments demonstrate that nano-DESI MSI combined with on-tissue top-down proteomics is ideally suited for the proteoform-selective imaging of tissue sections. Using rat brain tissue as a model system, we provide the first evidence of differential proteoform expression in different regions of the brain.


Asunto(s)
Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masas en Tándem , Animales , Iones , Proteoma/análisis , Proteómica/métodos , Ratas , Espectrometría de Masa por Ionización de Electrospray/métodos , Espectrometría de Masas en Tándem/métodos
8.
Nucleic Acids Res ; 46(7): 3458-3467, 2018 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-29438559

RESUMEN

Reactive oxygen species (ROS) are formed in mitochondria during electron transport and energy generation. Elevated levels of ROS lead to increased amounts of mitochondrial DNA (mtDNA) damage. We report that levels of M1dG, a major endogenous peroxidation-derived DNA adduct, are 50-100-fold higher in mtDNA than in nuclear DNA in several different human cell lines. Treatment of cells with agents that either increase or decrease mitochondrial superoxide levels leads to increased or decreased levels of M1dG in mtDNA, respectively. Sequence analysis of adducted mtDNA suggests that M1dG residues are randomly distributed throughout the mitochondrial genome. Basal levels of M1dG in mtDNA from pulmonary microvascular endothelial cells (PMVECs) from transgenic bone morphogenetic protein receptor 2 mutant mice (BMPR2R899X) (four adducts per 106 dG) are twice as high as adduct levels in wild-type cells. A similar increase was observed in mtDNA from heterozygous null (BMPR2+/-) compared to wild-type PMVECs. Pulmonary arterial hypertension is observed in the presence of BMPR2 signaling disruptions, which are also associated with mitochondrial dysfunction and oxidant injury to endothelial tissue. Persistence of M1dG adducts in mtDNA could have implications for mutagenesis and mitochondrial gene expression, thereby contributing to the role of mitochondrial dysfunction in diseases.


Asunto(s)
ADN Mitocondrial/metabolismo , Mitocondrias/genética , Estrés Oxidativo/genética , Nucleósidos de Purina/metabolismo , Animales , Receptores de Proteínas Morfogenéticas Óseas de Tipo II/genética , Aductos de ADN/genética , Aductos de ADN/metabolismo , ADN Mitocondrial/genética , Transporte de Electrón/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Regulación de la Expresión Génica/genética , Humanos , Hipertensión Pulmonar/genética , Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar/patología , Peroxidación de Lípido/genética , Ratones , Ratones Transgénicos , Mitocondrias/patología , Mutagénesis/genética , Oxidantes/farmacología , Nucleósidos de Purina/biosíntesis , Especies Reactivas de Oxígeno/química , Superóxidos/metabolismo
9.
Anal Chem ; 89(2): 1299-1306, 2017 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-27982582

RESUMEN

Post-translational modifications (PTMs) affect protein function, localization, and stability, yet very little is known about the ratios of these modifications. Here, we describe a novel method to quantitate and assess the relative stoichiometry of Lys and Arg modifications (QuARKMod) in complex biological settings. We demonstrate the versatility of this platform in monitoring recombinant protein modification of peptide substrates, PTMs of individual histones, and the relative abundance of these PTMs as a function of subcellular location. Lastly, we describe a product ion scanning technique that offers the potential to discover unexpected and possibly novel Lys and Arg modifications. In summary, this approach yields accurate quantitation and discovery of protein PTMs in complex biological systems without the requirement of high mass accuracy instrumentation.


Asunto(s)
Arginina/análisis , Cromatografía Líquida de Alta Presión/métodos , Histonas/química , Lisina/análisis , Péptidos/química , Procesamiento Proteico-Postraduccional , Espectrometría de Masas en Tándem/métodos , Células HEK293 , Humanos , Hidrólisis , Histona Demetilasas con Dominio de Jumonji/química , Proteínas Recombinantes/química
10.
Chem Res Toxicol ; 30(2): 635-641, 2017 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-27978618

RESUMEN

Rapidly proliferating cells require an increased rate of metabolism to allow for the production of nucleic acids, amino acids, and lipids. Pyruvate kinase catalyzes the final step in the glycolysis pathway, and different isoforms display vastly different catalytic efficiencies. The M2 isoform of pyruvate kinase (PKM2) is strongly expressed in cancer cells and contributes to aerobic glycolysis in what is commonly termed the Warburg effect. Here, we show that PKM2 is covalently modified by the lipid electrophiles 4-hydroxy-2-nonenal (HNE) and 4-oxo-2-nonenal (ONE). HNE and ONE modify multiple sites on PKM2 in vitro, including Cys424 and His439, which play a role in protein-protein interactions and fructose 1,6-bis-phosphate binding, respectively. Modification of these sites results in a dose-dependent decrease in enzymatic activity. In addition, high concentrations of the electrophile, most notably in the case of ONE, result in substantial protein-protein cross-linking in vitro and in cells. Exposure of RKO cells to electrophiles results in modification of monomeric PKM2 in a dose-dependent manner. There is a concomitant decrease in PKM2 activity in cells upon ONE exposure, but not HNE exposure. Together, our data suggest that modification of PKM2 by certain electrophiles results in kinase inactivation.


Asunto(s)
Aldehídos/farmacología , Inhibidores Enzimáticos/farmacología , Cetonas/farmacología , Piruvato Quinasa/antagonistas & inhibidores , Línea Celular Tumoral , Cromatografía Liquida , Química Clic , Humanos , Piruvato Quinasa/metabolismo , Espectrometría de Masas en Tándem
11.
Chem Res Toxicol ; 29(3): 323-32, 2016 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-26910110

RESUMEN

Oxidative stress is a contributing factor in a number of chronic diseases, including cancer, atherosclerosis, and neurodegenerative diseases. Lipid peroxidation that occurs during periods of oxidative stress results in the formation of lipid electrophiles, which can modify a multitude of proteins in the cell. 4-Hydroxy-2-nonenal (HNE) is one of the most well-studied lipid electrophiles and has previously been shown to arrest cells at the G1/S transition. Recently, proteomic data have shown that HNE is capable of covalently modifying CDK2, the kinase responsible for the G1/S transition. Here, we identify the sites adducted by HNE using recombinant CDK2 and show that HNE treatment suppresses the kinase activity of the enzyme. We further identify sites of adduction in HNE-treated intact human colorectal carcinoma cells (RKO) and show that HNE-dependent modification in cells is long-lived, disrupts CDK2 function, and correlates with a delay of progression of the cells into S-phase. We propose that adduction of CDK2 by HNE directly alters its activity, contributing to the cell cycle delay.


Asunto(s)
Aldehídos/química , Aldehídos/farmacología , Puntos de Control del Ciclo Celular/efectos de los fármacos , Quinasa 2 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 2 Dependiente de la Ciclina/química , Quinasa 2 Dependiente de la Ciclina/metabolismo , Relación Dosis-Respuesta a Droga , Humanos , Modelos Moleculares , Relación Estructura-Actividad , Células Tumorales Cultivadas
12.
Chem Res Toxicol ; 28(4): 817-27, 2015 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-25739016

RESUMEN

Products of oxidative damage to lipids include 4-hydroxy-2-nonenal (HNE) and 4-oxo-2-nonenal (ONE), both of which are cytotoxic electrophiles. ONE reacts more rapidly with nucleophilic amino acid side chains, resulting in covalent protein adducts, including residue-residue cross-links. Previously, we demonstrated that peptidylprolyl cis/trans isomerase A1 (Pin1) was highly susceptible to adduction by HNE and that the catalytic cysteine (Cys113) was the preferential site of modification. Here, we show that ONE also preferentially adducts Pin1 at the catalytic Cys but results in a profoundly different modification. Results from experiments using purified Pin1 incubated with ONE revealed the principal product to be a Cys-Lys pyrrole-containing cross-link between the side chains of Cys113 and Lys117. In vitro competition assays between HNE and ONE demonstrate that ONE reacts more rapidly than HNE with Cys113. Exposure of RKO cells to alkynyl-ONE (aONE) followed by copper-mediated click chemistry and streptavidin purification revealed that Pin1 is also modified by ONE in cells. Analysis of the Pin1 crystal structure reveals that Cys113 and Lys117 are oriented toward each other in the active site, facilitating formation of an ONE cross-link.


Asunto(s)
Aldehídos/química , Reactivos de Enlaces Cruzados/química , Isomerasa de Peptidilprolil/química , Dominio Catalítico , Línea Celular Tumoral , Humanos , Peptidilprolil Isomerasa de Interacción con NIMA , Estrés Oxidativo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
13.
bioRxiv ; 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37609190

RESUMEN

To increase antibody affinity against pathogens, positively selected GC-B cells initiate cell division in the light zone (LZ) of germinal centres (GCs). Among those, higher-affinity clones migrate to the dark zone (DZ) and vigorously proliferate by relying on oxidative phosphorylation (OXPHOS). However, it remains unknown how positively selected GC-B cells adapt their metabolism for cell division in the glycolysis-dominant, cell cycle arrest-inducing, hypoxic LZ microenvironment. Here, we show that microRNA (miR)-155 mediates metabolic reprogramming during positive selection to protect high-affinity clones. Transcriptome examination and mass spectrometry analysis revealed that miR-155 regulates H3K36me2 levels by directly repressing hypoxia-induced histone lysine demethylase, Kdm2a. This is indispensable for enhancing OXPHOS through optimizing the expression of vital nuclear mitochondrial genes under hypoxia. The miR-155-Kdm2a interaction is crucial to prevent excessive production of reactive oxygen species and apoptosis. Thus, miR-155-mediated epigenetic regulation promotes mitochondrial fitness in high-affinity clones, ensuring their expansion and consequently affinity maturation.

14.
Nat Commun ; 14(1): 6478, 2023 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-37838706

RESUMEN

The molecular identification of tissue proteoforms by top-down mass spectrometry (TDMS) is significantly limited by throughput and dynamic range. We introduce AutoPiMS, a single-ion MS based multiplexed workflow for top-down tandem MS (MS2) directly from tissue microenvironments in a semi-automated manner. AutoPiMS directly off human ovarian cancer sections allowed for MS2 identification of 73 proteoforms up to 54 kDa at a rate of <1 min per proteoform. AutoPiMS is directly interfaced with multifaceted proteoform imaging MS data modalities for the identification of proteoform signatures in tumor and stromal regions in ovarian cancer biopsies. From a total of ~1000 proteoforms detected by region-of-interest label-free quantitation, we discover 303 differential proteoforms in stroma versus tumor from the same patient. 14 of the top proteoform signatures are corroborated by MSI at 20 micron resolution including the differential localization of methylated forms of CRIP1, indicating the importance of proteoform-enabled spatial biology in ovarian cancer.


Asunto(s)
Neoplasias Ováricas , Proteoma , Humanos , Femenino , Proteoma/análisis , Neoplasias Ováricas/diagnóstico por imagen , Espectrometría de Masas en Tándem/métodos , Programas Informáticos , Microambiente Tumoral
15.
Nat Struct Mol Biol ; 30(8): 1077-1091, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37460896

RESUMEN

Conventional dogma presumes that protamine-mediated DNA compaction in sperm is achieved by electrostatic interactions between DNA and the arginine-rich core of protamines. Phylogenetic analysis reveals several non-arginine residues conserved within, but not across species. The significance of these residues and their post-translational modifications are poorly understood. Here, we investigated the role of K49, a rodent-specific lysine residue in protamine 1 (P1) that is acetylated early in spermiogenesis and retained in sperm. In sperm, alanine substitution (P1(K49A)) decreases sperm motility and male fertility-defects that are not rescued by arginine substitution (P1(K49R)). In zygotes, P1(K49A) leads to premature male pronuclear decompaction, altered DNA replication, and embryonic arrest. In vitro, P1(K49A) decreases protamine-DNA binding and alters DNA compaction and decompaction kinetics. Hence, a single amino acid substitution outside the P1 arginine core is sufficient to profoundly alter protein function and developmental outcomes, suggesting that protamine non-arginine residues are essential for reproductive fitness.


Asunto(s)
Aminoácidos , Aptitud Genética , Animales , Masculino , Ratones , Aminoácidos/metabolismo , Arginina/metabolismo , Cromatina/metabolismo , ADN/genética , ADN/metabolismo , Filogenia , Protaminas/química , Protaminas/genética , Protaminas/metabolismo , Semen/metabolismo , Motilidad Espermática , Espermatozoides
16.
Cancer Discov ; 12(7): 1782-1803, 2022 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-35443279

RESUMEN

SETD2 is the sole histone methyltransferase responsible for H3K36me3, with roles in splicing, transcription initiation, and DNA damage response. Homozygous disruption of SETD2 yields a tumor suppressor effect in various cancers. However, SETD2 mutation is typically heterozygous in diffuse large B-cell lymphomas. Here we show that heterozygous Setd2 deficiency results in germinal center (GC) hyperplasia and increased competitive fitness, with reduced DNA damage checkpoint activity and apoptosis, resulting in accelerated lymphomagenesis. Impaired DNA damage sensing in Setd2-haploinsufficient germinal center B (GCB) and lymphoma cells associated with increased AICDA-induced somatic hypermutation, complex structural variants, and increased translocations including those activating MYC. DNA damage was selectively increased on the nontemplate strand, and H3K36me3 loss was associated with greater RNAPII processivity and mutational burden, suggesting that SETD2-mediated H3K36me3 is required for proper sensing of cytosine deamination. Hence, Setd2 haploinsufficiency delineates a novel GCB context-specific oncogenic pathway involving defective epigenetic surveillance of AICDA-mediated effects on transcribed genes. SIGNIFICANCE: Our findings define a B cell-specific oncogenic effect of SETD2 heterozygous mutation, which unleashes AICDA mutagenesis of nontemplate strand DNA in the GC reaction, resulting in lymphomas with heavy mutational burden. GC-derived lymphomas did not tolerate SETD2 homozygous deletion, pointing to a novel context-specific therapeutic vulnerability. This article is highlighted in the In This Issue feature, p. 1599.


Asunto(s)
Linfocitos B , Citidina Desaminasa , Centro Germinal , Haploinsuficiencia , N-Metiltransferasa de Histona-Lisina , Hipermutación Somática de Inmunoglobulina , Citidina Desaminasa/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , Homocigoto , Humanos , Eliminación de Secuencia
17.
Sci Adv ; 8(32): eabp9929, 2022 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-35947651

RESUMEN

Imaging of proteoforms in human tissues is hindered by low molecular specificity and limited proteome coverage. Here, we introduce proteoform imaging mass spectrometry (PiMS), which increases the size limit for proteoform detection and identification by fourfold compared to reported methods and reveals tissue localization of proteoforms at <80-µm spatial resolution. PiMS advances proteoform imaging by combining ambient nanospray desorption electrospray ionization with ion detection using individual ion mass spectrometry. We demonstrate highly multiplexed proteoform imaging of human kidney, annotating 169 of 400 proteoforms of <70 kDa using top-down MS and a database lookup of ~1000 kidney candidate proteoforms, including dozens of key enzymes in primary metabolism. PiMS images reveal distinct spatial localizations of proteoforms to both anatomical structures and cellular neighborhoods in the vasculature, medulla, and cortex regions of the human kidney. The benefits of PiMS are poised to increase proteome coverage for label-free protein imaging of tissues.

18.
Science ; 375(6579): 411-418, 2022 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-35084980

RESUMEN

Human biology is tightly linked to proteins, yet most measurements do not precisely determine alternatively spliced sequences or posttranslational modifications. Here, we present the primary structures of ~30,000 unique proteoforms, nearly 10 times more than in previous studies, expressed from 1690 human genes across 21 cell types and plasma from human blood and bone marrow. The results, compiled in the Blood Proteoform Atlas (BPA), indicate that proteoforms better describe protein-level biology and are more specific indicators of differentiation than their corresponding proteins, which are more broadly expressed across cell types. We demonstrate the potential for clinical application, by interrogating the BPA in the context of liver transplantation and identifying cell and proteoform signatures that distinguish normal graft function from acute rejection and other causes of graft dysfunction.


Asunto(s)
Células Sanguíneas/química , Proteínas Sanguíneas/química , Células de la Médula Ósea/química , Bases de Datos de Proteínas , Isoformas de Proteínas/química , Proteoma/química , Empalme Alternativo , Linfocitos B/química , Proteínas Sanguíneas/genética , Linaje de la Célula , Humanos , Leucocitos Mononucleares/química , Trasplante de Hígado , Plasma/química , Isoformas de Proteínas/genética , Procesamiento Proteico-Postraduccional , Proteómica , Linfocitos T/química
19.
Toxicol Appl Pharmacol ; 257(1): 1-13, 2011 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-21925530

RESUMEN

Exposure of human bladder urothelial cells (UROtsa) to 50 nM of the arsenic metabolite, monomethylarsonous acid (MMA(III)), for 12 weeks results in irreversible malignant transformation. The ability of continuous, low-level MMA(III) exposure to cause an increase in genotoxic potential by inhibiting repair processes necessary to maintain genomic stability is unknown. Following genomic insult within cellular systems poly(ADP-ribose) polymerase-1 (PARP-1), a zinc finger protein, is rapidly activated and recruited to sites of DNA strand breaks. When UROtsa cells are continuously exposed to 50 nM MMA(III), PARP-1 activity does not increase despite the increase in MMA(III)-induced DNA single-strand breaks through 12 weeks of exposure. When UROtsa cells are removed from continuous MMA(III) exposure (2 weeks), PARP-1 activity increases coinciding with a subsequent decrease in DNA damage levels. Paradoxically, PARP-1 mRNA expression and protein levels are elevated in the presence of continuous MMA(III) indicating a possible mechanism to compensate for the inhibition of PARP-1 activity in the presence of MMA(III). The zinc finger domains of PARP-1 contain vicinal sulfhydryl groups which may act as a potential site for MMA(III) to bind, displace zinc ion, and render PARP-1 inactive. Mass spectrometry analysis demonstrates the ability of MMA(III) to bind a synthetic peptide representing the zinc-finger domain of PARP-1, and displace zinc from the peptide in a dose-dependent manner. In the presence of continuous MMA(III) exposure, continuous 4-week zinc supplementation restored PARP-1 activity levels and reduced the genotoxicity associated with MMA(III). Zinc supplementation did not produce an overall increase in PARP-1 protein levels, decrease the levels of MMA(III)-induced reactive oxygen species, or alter Cu-Zn superoxide dismutase levels. Overall, these results present two potential interdependent mechanisms in which MMA(III) may increase the susceptibility of UROtsa cells to genotoxic insult and/or malignant transformation: elevated levels of MMA(III)-induced DNA damage through the production of reactive oxygen species, and the direct MMA(III)-induced inhibition of PARP-1.


Asunto(s)
Carcinógenos/toxicidad , Transformación Celular Neoplásica/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Compuestos Organometálicos/toxicidad , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Especies Reactivas de Oxígeno/metabolismo , Vejiga Urinaria/efectos de los fármacos , Urotelio/efectos de los fármacos , Western Blotting , Línea Celular , Transformación Celular Neoplásica/metabolismo , Cloruros/farmacología , Ensayo Cometa , Citometría de Flujo , Humanos , Poli(ADP-Ribosa) Polimerasa-1 , Poli(ADP-Ribosa) Polimerasas/metabolismo , Vejiga Urinaria/citología , Neoplasias de la Vejiga Urinaria/inducido químicamente , Urotelio/citología , Compuestos de Zinc/farmacología
20.
J Am Soc Mass Spectrom ; 32(7): 1659-1670, 2021 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-34043341

RESUMEN

Different proteoform products of the same gene can exhibit differing associations with health and disease, and their patterns of modifications may offer more precise markers of phenotypic differences between individuals. However, currently employed protein-biomarker discovery and quantification tools, such as bottom-up proteomics and ELISAs, are mostly proteoform-unaware. Moreover, the current throughput for proteoform-level analyses by liquid chromatography mass spectrometry (LCMS) for quantitative top-down proteomics is incompatible with population-level biomarker surveys requiring robust, faster proteoform analysis. To this end, we developed immunoprecipitation coupled to SampleStream mass spectrometry (IP-SampleStream-MS) as a high-throughput, automated technique for the targeted quantification of proteoforms. We applied IP-SampleStream-MS to serum samples of 25 individuals to assess the proteoform abundances of apolipoproteins A-I (ApoA-I) and C-III (ApoC-III). The results for ApoA-I were compared to those of LCMS for these individuals, with IP-SampleStream-MS showing a >7-fold higher throughput with >50% better analytical variation. Proteoform abundances measured by IP-SampleStream-MS correlated strongly to LCMS-based values (R2 = 0.6-0.9) and produced convergent proteoform-to-phenotype associations, namely, the abundance of canonical ApoA-I was associated with lower HDL-C (R = 0.5) and glycated ApoA-I with higher fasting glucose (R = 0.6). We also observed proteoform-to-phenotype associations for ApoC-III, 22 glycoproteoforms of which were characterized in this study. The abundance of ApoC-III modified by a single N-acetyl hexosamine (HexNAc) was associated with indices of obesity, such as BMI, weight, and waist circumference (R ∼ 0.7). These data show IP-SampleStream-MS to be a robust, scalable workflow for high-throughput associations of proteoforms to phenotypes.


Asunto(s)
Inmunoprecipitación , Espectrometría de Masas , Proteómica , Adulto , Apolipoproteína A-I/análisis , Apolipoproteína A-I/química , Cromatografía Liquida , Diseño de Equipo , Femenino , Humanos , Inmunoprecipitación/instrumentación , Inmunoprecipitación/métodos , Masculino , Espectrometría de Masas/instrumentación , Espectrometría de Masas/métodos , Persona de Mediana Edad , Proteínas/análisis , Proteínas/química , Proteómica/instrumentación , Proteómica/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA