Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Exp Mol Pathol ; 103(3): 320-329, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29157955

RESUMEN

Cervical cancer is caused by human papillomavirus (HPV). The disease develops over many years through a series of precancerous lesions. Cervical cancer can be prevented by HPV-vaccination, screening and treatment of precancer before development of cervical cancer. The treatment of high-grade cervical dysplasia (CIN 2+) has traditionally been by cervical conization. Surgical procedures are associated with increased risk of undesirable side effects including bleeding, infection, scarring (stenosis), infertility and complications in later pregnancies. An inexpensive, non-invasive method of delivering therapeutics locally will be favorable to treat precancerous cervical lesions without damaging healthy tissue. The feasibility and safety of a sustained, continuous drug-releasing cervical polymeric implant for use in clinical trials was studied using a large animal model. The goat (Capra hircus), non-pregnant adult female Boer goats, was chosen due to similarities in cervical dimensions to the human. Estrus was induced with progesterone CIDR® vaginal implants for 14days followed by the administration of chorionic gonadotropins 48h prior to removal of the progesterone implants to relax the cervix to allow for the placement of the cervical implant. Cervical implants, containing 2% and 4% withaferin A (WFA), with 8 coats of blank polymer, provided sustained release for a long duration and were used for the animal study. The 'mushroom'-shaped cervical polymeric implant, originally designed for women required redesigning to be accommodated within the goat cervix. The cervical implants were well tolerated by the animals with no obvious evidence of discomfort, systemic or local inflammation or toxicity. In addition, we developed a new method to analyze tissue WFA levels by solvent extractions and LS/MS-MS. WFA was found to be localized to the target and adjacent tissues with 12-16ng WFA/g tissue, with essentially no detectable WFA in distant tissues. This study suggests that the goat is a good large animal model for the future development and evaluation of therapeutic efficacy of continuous local drug delivery by cervical polymeric implants to treat precancerous cervical lesions.


Asunto(s)
Sistemas de Liberación de Medicamentos , Infecciones por Papillomavirus/tratamiento farmacológico , Displasia del Cuello del Útero/tratamiento farmacológico , Witanólidos/administración & dosificación , Animales , Modelos Animales de Enfermedad , Femenino , Cabras , Humanos , Papillomaviridae/patogenicidad , Infecciones por Papillomavirus/complicaciones , Infecciones por Papillomavirus/patología , Infecciones por Papillomavirus/virología , Embarazo , Displasia del Cuello del Útero/complicaciones , Displasia del Cuello del Útero/patología , Displasia del Cuello del Útero/virología
2.
Plast Reconstr Surg Glob Open ; 10(1): e4056, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35186622

RESUMEN

Intraoperative three-dimensional fabrication of living tissues could be the next biomedical revolution in patient treatment. APPROACH: We developed a surgery-ready robotic three-dimensional bioprinter and demonstrated that a bioprinting procedure using medical grade hydrogel could be performed using a 6-axis robotic arm in vivo for treating burn injuries. RESULTS: We conducted a pilot swine animal study on a deep third-degree severe burn model. We observed that the use of cell-laden bioink as treatment substantially affects skin regeneration, producing in situ fibroblast growth factor and vascular endothelial growth factor, necessary for tissue regeneration and re-epidermalization of the wound. CONCLUSIONS: We described an animal study of intraoperative three-dimensional bioprinting living tissue. This emerging technology brings the first proof of in vivo skin printing feasibility using a surgery-ready robotic arm-based bioprinter. Our positive outcome in skin regeneration, joined with this procedure's feasibility, allow us to envision the possibility of using this innovative approach in a human clinical trial in the near future.

3.
J Vis Exp ; (100): e52834, 2015 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-26132732

RESUMEN

A 3-axis dispensing system is utilized to control the initiating and terminating fiber positions and trajectory via the dispensing software. The polymer fiber length and orientation is defined by the spatial positioning of the dispensing system 3-axis stages. The fiber diameter is defined by the prescribed dispense time of the dispensing system valve, the feed rate (the speed at which the stage traverses from an initiating to a terminating position), the gauge diameter of the dispensing tip, the viscosity and surface tension of the polymer solution, and the programmed drawing length. The stage feed rate affects the polymer solution's evaporation rate and capillary breakup of the filaments. The dispensing system consists of a pneumatic valve controller, a droplet-dispensing valve and a dispensing tip. Characterization of the direct write process to determine the optimum combination of factors leads to repeatedly acquiring the desired range of fiber diameters. The advantage of this robotic dispensing system is the ease of obtaining a precise range of micron/sub-micron fibers onto a desired, programmed location via automated process control. Here, the discussed self-assembled micron/sub-micron scale 3D structures have been employed to fabricate suspended structures to create micron/sub-micron fluidic devices and bioengineered scaffolds.


Asunto(s)
Técnicas Analíticas Microfluídicas/instrumentación , Técnicas Analíticas Microfluídicas/métodos , Polímeros/química , Robótica/instrumentación , Robótica/métodos , Tamaño de la Partícula
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA