Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.207
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 187(1): 17-43, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-38181740

RESUMEN

Although social interactions are known to drive pathogen transmission, the contributions of socially transmissible host-associated mutualists and commensals to host health and disease remain poorly explored. We use the concept of the social microbiome-the microbial metacommunity of a social network of hosts-to analyze the implications of social microbial transmission for host health and disease. We investigate the contributions of socially transmissible microbes to both eco-evolutionary microbiome community processes (colonization resistance, the evolution of virulence, and reactions to ecological disturbance) and microbial transmission-based processes (transmission of microbes with metabolic and immune effects, inter-specific transmission, transmission of antibiotic-resistant microbes, and transmission of viruses). We consider the implications of social microbial transmission for communicable and non-communicable diseases and evaluate the importance of a socially transmissible component underlying canonically non-communicable diseases. The social transmission of mutualists and commensals may play a significant, under-appreciated role in the social determinants of health and may act as a hidden force in social evolution.


Asunto(s)
Microbiota , Factores Sociales , Simbiosis , Animales , Humanos , Enfermedades no Transmisibles , Virulencia
2.
Nat Immunol ; 21(1): 54-64, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31819256

RESUMEN

Ptpn6 is a cytoplasmic phosphatase that functions to prevent autoimmune and interleukin-1 (IL-1) receptor-dependent, caspase-1-independent inflammatory disease. Conditional deletion of Ptpn6 in neutrophils (Ptpn6∆PMN) is sufficient to initiate IL-1 receptor-dependent cutaneous inflammatory disease, but the source of IL-1 and the mechanisms behind IL-1 release remain unclear. Here, we investigate the mechanisms controlling IL-1α/ß release from neutrophils by inhibiting caspase-8-dependent apoptosis and Ripk1-Ripk3-Mlkl-regulated necroptosis. Loss of Ripk1 accelerated disease onset, whereas combined deletion of caspase-8 and either Ripk3 or Mlkl strongly protected Ptpn6∆PMN mice. Ptpn6∆PMN neutrophils displayed increased p38 mitogen-activated protein kinase-dependent Ripk1-independent IL-1 and tumor necrosis factor production, and were prone to cell death. Together, these data emphasize dual functions for Ptpn6 in the negative regulation of p38 mitogen-activated protein kinase activation to control tumor necrosis factor and IL-1α/ß expression, and in maintaining Ripk1 function to prevent caspase-8- and Ripk3-Mlkl-dependent cell death and concomitant IL-1α/ß release.


Asunto(s)
Apoptosis/inmunología , Caspasa 8/inmunología , Neutrófilos/inmunología , Proteínas Quinasas/inmunología , Proteína Tirosina Fosfatasa no Receptora Tipo 6/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/inmunología , Animales , Caspasa 8/genética , Células Cultivadas , Eliminación de Gen , Inflamación/inmunología , Interleucina-1/inmunología , Interleucina-1alfa/metabolismo , Interleucina-1beta/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína Tirosina Fosfatasa no Receptora Tipo 6/genética , Receptores Tipo I de Interleucina-1/inmunología , Factor de Necrosis Tumoral alfa/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
3.
Nat Rev Genet ; 25(2): 142-157, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37749210

RESUMEN

Antimicrobial resistance (AMR) - the ability of microorganisms to adapt and survive under diverse chemical selection pressures - is influenced by complex interactions between humans, companion and food-producing animals, wildlife, insects and the environment. To understand and manage the threat posed to health (human, animal, plant and environmental) and security (food and water security and biosecurity), a multifaceted 'One Health' approach to AMR surveillance is required. Genomic technologies have enabled monitoring of the mobilization, persistence and abundance of AMR genes and mutations within and between microbial populations. Their adoption has also allowed source-tracing of AMR pathogens and modelling of AMR evolution and transmission. Here, we highlight recent advances in genomic AMR surveillance and the relative strengths of different technologies for AMR surveillance and research. We showcase recent insights derived from One Health genomic surveillance and consider the challenges to broader adoption both in developed and in lower- and middle-income countries.


Asunto(s)
Farmacorresistencia Bacteriana , Salud Única , Animales , Humanos , Farmacorresistencia Bacteriana/genética , Antibacterianos/farmacología , Genómica , Animales Salvajes
4.
Trends Biochem Sci ; 49(3): 224-235, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38160064

RESUMEN

At its most fundamental level, life is a collection of synchronized cellular processes driven by interactions among biomolecules. Proximity labeling has emerged as a powerful technique to capture these interactions in native settings, revealing previously unexplored elements of biology. This review highlights recent developments in proximity labeling, focusing on methods that push the fundamental technologies beyond the classic bait-prey paradigm, such as RNA-protein interactions, ligand/small-molecule-protein interactions, cell surface protein interactions, and subcellular protein trafficking. The advancement of proximity labeling methods to address different biological problems will accelerate our understanding of the complex biological systems that make up life.


Asunto(s)
Proteínas de la Membrana , Proteómica , Proteómica/métodos , Proteínas de la Membrana/metabolismo
5.
Proc Natl Acad Sci U S A ; 121(30): e2408109121, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39028694

RESUMEN

The prevalence of "long COVID" is just one of the conundrums highlighting how little we know about the lung's response to viral infection, particularly to syndromecoronavirus-2 (SARS-CoV-2), for which the lung is the point of entry. We used an in vitro human lung system to enable a prospective, unbiased, sequential single-cell level analysis of pulmonary cell responses to infection by multiple SARS-CoV-2 strains. Starting with human induced pluripotent stem cells and emulating lung organogenesis, we generated and infected three-dimensional, multi-cell-type-containing lung organoids (LOs) and gained several unexpected insights. First, SARS-CoV-2 tropism is much broader than previously believed: Many lung cell types are infectable, if not through a canonical receptor-mediated route (e.g., via Angiotensin-converting encyme 2(ACE2)) then via a noncanonical "backdoor" route (via macropinocytosis, a form of endocytosis). Food and Drug Administration (FDA)-approved endocytosis blockers can abrogate such entry, suggesting adjunctive therapies. Regardless of the route of entry, the virus triggers a lung-autonomous, pulmonary epithelial cell-intrinsic, innate immune response involving interferons and cytokine/chemokine production in the absence of hematopoietic derivatives. The virus can spread rapidly throughout human LOs resulting in mitochondrial apoptosis mediated by the prosurvival protein Bcl-xL. This host cytopathic response to the virus may help explain persistent inflammatory signatures in a dysfunctional pulmonary environment of long COVID. The host response to the virus is, in significant part, dependent on pulmonary Surfactant Protein-B, which plays an unanticipated role in signal transduction, viral resistance, dampening of systemic inflammatory cytokine production, and minimizing apoptosis. Exogenous surfactant, in fact, can be broadly therapeutic.


Asunto(s)
COVID-19 , Pulmón , Organoides , SARS-CoV-2 , Internalización del Virus , Humanos , SARS-CoV-2/fisiología , SARS-CoV-2/inmunología , COVID-19/inmunología , COVID-19/virología , Pulmón/virología , Pulmón/inmunología , Pulmón/patología , Organoides/virología , Tratamiento Farmacológico de COVID-19 , Células Madre Pluripotentes Inducidas/virología , Enzima Convertidora de Angiotensina 2/metabolismo , Inflamación , Citocinas/metabolismo , Apoptosis
6.
Proc Natl Acad Sci U S A ; 120(39): e2308238120, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37729203

RESUMEN

Vibrio cholerae, the causative agent of the disease cholera, is responsible for multiple pandemics. V. cholerae binds to and colonizes the gastrointestinal tract within the human host, as well as various surfaces in the marine environment (e.g., zooplankton) during interepidemic periods. A large adhesin, the Flagellar Regulated Hemagglutinin A (FrhA), enhances binding to erythrocytes and epithelial cells and enhances intestinal colonization. We identified a peptide-binding domain (PBD) within FrhA that mediates hemagglutination, binding to epithelial cells, intestinal colonization, and facilitates biofilm formation. Intriguingly, this domain is also found in the ice-binding protein of the Antarctic bacterium Marinomonas primoryensis, where it mediates binding to diatoms. Peptide inhibitors of the M. primoryensis PBD inhibit V. cholerae binding to human cells as well as to diatoms and inhibit biofilm formation. Moreover, the M. primoryensis PBD inserted into FrhA allows V. cholerae to bind human cells and colonize the intestine and also enhances biofilm formation, demonstrating the interchangeability of the PBD from these bacteria. Importantly, peptide inhibitors of PBD reduce V. cholerae intestinal colonization in infant mice. These studies demonstrate how V. cholerae uses a PBD shared with a diatom-binding Antarctic bacterium to facilitate intestinal colonization in humans and biofilm formation in the environment.


Asunto(s)
Diatomeas , Vibrio cholerae , Animales , Humanos , Lactante , Ratones , Bacterias , Agregación Celular , Tracto Gastrointestinal , Intestinos , Vibrio cholerae/genética
7.
J Neurosci ; 44(20)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38565291

RESUMEN

Microglia undergo two-stage activation in neurodegenerative diseases, known as disease-associated microglia (DAM). TREM2 mediates the DAM2 stage transition, but what regulates the first DAM1 stage transition is unknown. We report that glucose dyshomeostasis inhibits DAM1 activation and PKM2 plays a role. As in tumors, PKM2 was aberrantly elevated in both male and female human AD brains, but unlike in tumors, it is expressed as active tetramers, as well as among TREM2+ microglia surrounding plaques in 5XFAD male and female mice. snRNAseq analyses of microglia without Pkm2 in 5XFAD mice revealed significant increases in DAM1 markers in a distinct metabolic cluster, which is enriched in genes for glucose metabolism, DAM1, and AD risk. 5XFAD mice incidentally exhibited a significant reduction in amyloid pathology without microglial Pkm2 Surprisingly, microglia in 5XFAD without Pkm2 exhibited increases in glycolysis and spare respiratory capacity, which correlated with restoration of mitochondrial cristae alterations. In addition, in situ spatial metabolomics of plaque-bearing microglia revealed an increase in respiratory activity. These results together suggest that it is not only glycolytic but also respiratory inputs that are critical to the development of DAM signatures in 5XFAD mice.


Asunto(s)
Glucosa , Homeostasis , Ratones Transgénicos , Microglía , Animales , Microglía/metabolismo , Microglía/patología , Ratones , Homeostasis/fisiología , Glucosa/metabolismo , Masculino , Femenino , Humanos , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/genética , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Receptores Inmunológicos/metabolismo , Receptores Inmunológicos/genética , Glucólisis/fisiología , Proteínas de Unión a Hormona Tiroide
8.
J Biol Chem ; 300(1): 105582, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38141762

RESUMEN

The intracellular parasite, Toxoplasma gondii, has developed sophisticated molecular strategies to subvert host processes and promote growth and survival. During infection, T. gondii replicates in a parasitophorous vacuole (PV) and modulates host functions through a network of secreted proteins. Of these, Mitochondrial Association Factor 1b (MAF1b) recruits host mitochondria to the PV, a process that confers an in vivo growth advantage, though the precise mechanisms remain enigmatic. To address this knowledge gap, we mapped the MAF1b interactome in human fibroblasts using a commercial Yeast-2-hybrid (Y2H) screen, which revealed several previously unidentified binding partners including the GAP domain of Ral GTPase Accelerating Protein α1 (RalGAPα1(GAP)). Recombinantly produced MAF1b and RalGAPα1(GAP) formed as a stable binary complex as shown by size exclusion chromatography with a Kd of 334 nM as measured by isothermal titration calorimetry (ITC). Notably, no binding was detected between RalGAPα1(GAP) and the structurally conserved MAF1b homolog, MAF1a, which does not recruit host mitochondria. Next, we used hydrogen deuterium exchange mass spectrometry (HDX-MS) to map the RalGAPα1(GAP)-MAF1b interface, which led to identification of the "GAP-binding loop" on MAF1b that was confirmed by mutagenesis and ITC to be necessary for complex formation. A high-confidence Alphafold model predicts the GAP-binding loop to lie at the RalGAPα1(GAP)-MAF1b interface further supporting the HDX-MS data. Mechanistic implications of a RalGAPα1(GAP)-MAF1b complex are discussed in the context of T. gondii infection and indicates that MAF1b may have evolved multiple independent functions to increase T. gondii fitness.


Asunto(s)
Proteínas Activadoras de GTPasa , Mitocondrias , Mapas de Interacción de Proteínas , Proteínas Protozoarias , Toxoplasma , Humanos , Sitios de Unión , Calorimetría , Cromatografía en Gel , Fibroblastos/metabolismo , Fibroblastos/parasitología , Proteínas Activadoras de GTPasa/química , Proteínas Activadoras de GTPasa/genética , Proteínas Activadoras de GTPasa/metabolismo , Espectrometría de Masas de Intercambio de Hidrógeno-Deuterio , Mitocondrias/metabolismo , Mitocondrias/parasitología , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Toxoplasma/química , Toxoplasma/genética , Toxoplasma/metabolismo , Técnicas del Sistema de Dos Híbridos
9.
Mol Cell Proteomics ; 22(4): 100529, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36931626

RESUMEN

The canonical view of PI3Kα signaling describes phosphatidylinositol-3,4,5-trisphosphate (PtdIns(3,4,5)P3) generation and activation of downstream effectors at the plasma membrane or at microtubule-bound endosomes. Here, we show that colorectal cancer (CRC) cell lines exhibit a diverse plasma membrane-nuclear distribution of PI3Kα, controlling corresponding levels of subcellular PtdIns(3,4,5)P3 pools. PI3Kα nuclear translocation was mediated by the importin ß-dependent nuclear import pathway. By PtdIns(3,4,5)P3 affinity capture mass spectrometry done in the presence of SDS on CRC cell lines with PI3Kα nuclear localization, we identified 867 potential nuclear PtdIns(3,4,5)P3 effector proteins. Nuclear PtdIns(3,4,5)P3 interactome proteins were characterized by noncanonical PtdIns(3,4,5)P3-binding domains and showed overrepresentation for nuclear membrane, nucleolus, and nuclear speckles. The nuclear PtdIns(3,4,5)P3 interactome was enriched for proteins related to RNA metabolism, with splicing reporter assays and SC-35 foci staining suggesting a role of epidermal growth factor-stimulated nuclear PI3Kα signaling in modulating pre-mRNA splicing. In patient tumors, nuclear p110α staining was associated with lower T stage and mucinous histology. These results indicate that PI3Kα translocation mediates nuclear PtdIns(3,4,5)P3 effector signaling in human CRC, modulating signaling responses.


Asunto(s)
Neoplasias Colorrectales , Fosfatidilinositoles , Humanos , Fosfatidilinositoles/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Transducción de Señal , Núcleo Celular/metabolismo , Neoplasias Colorrectales/metabolismo
10.
Nucleic Acids Res ; 51(W1): W108-W114, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37216585

RESUMEN

Carbohydrate-processing enzymes, CAZymes, are classified into families based on sequence and three-dimensional fold. Because many CAZyme families contain members of diverse molecular function (different EC-numbers), sophisticated tools are required to further delineate these enzymes. Such delineation is provided by the peptide-based clustering method CUPP, Conserved Unique Peptide Patterns. CUPP operates synergistically with the CAZy family/subfamily categorizations to allow systematic exploration of CAZymes by defining small protein groups with shared sequence motifs. The updated CUPP library contains 21,930 of such motif groups including 3,842,628 proteins. The new implementation of the CUPP-webserver, https://cupp.info/, now includes all published fungal and algal genomes from the Joint Genome Institute (JGI), genome resources MycoCosm and PhycoCosm, dynamically subdivided into motif groups of CAZymes. This allows users to browse the JGI portals for specific predicted functions or specific protein families from genome sequences. Thus, a genome can be searched for proteins having specific characteristics. All JGI proteins have a hyperlink to a summary page which links to the predicted gene splicing including which regions have RNA support. The new CUPP implementation also includes an update of the annotation algorithm that uses only a fourth of the RAM while enabling multi-threading, providing an annotation speed below 1 ms/protein.


Asunto(s)
Genoma Fúngico , Programas Informáticos , Carbohidratos , Anotación de Secuencia Molecular , Péptidos/genética
11.
Nucleic Acids Res ; 51(D1): D1230-D1241, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36373660

RESUMEN

CIViC (Clinical Interpretation of Variants in Cancer; civicdb.org) is a crowd-sourced, public domain knowledgebase composed of literature-derived evidence characterizing the clinical utility of cancer variants. As clinical sequencing becomes more prevalent in cancer management, the need for cancer variant interpretation has grown beyond the capability of any single institution. CIViC contains peer-reviewed, published literature curated and expertly-moderated into structured data units (Evidence Items) that can be accessed globally and in real time, reducing barriers to clinical variant knowledge sharing. We have extended CIViC's functionality to support emergent variant interpretation guidelines, increase interoperability with other variant resources, and promote widespread dissemination of structured curated data. To support the full breadth of variant interpretation from basic to translational, including integration of somatic and germline variant knowledge and inference of drug response, we have enabled curation of three new Evidence Types (Predisposing, Oncogenic and Functional). The growing CIViC knowledgebase has over 300 contributors and distributes clinically-relevant cancer variant data currently representing >3200 variants in >470 genes from >3100 publications.


Asunto(s)
Variación Genética , Neoplasias , Humanos , Neoplasias/genética , Bases del Conocimiento , Secuenciación de Nucleótidos de Alto Rendimiento
12.
Nano Lett ; 24(17): 5104-5109, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38640421

RESUMEN

mRNA lipid nanoparticles (LNPs) have emerged as powerful modalities for gene therapies to control cancer and infectious and immune diseases. Despite the escalating interest in mRNA-LNPs over the past few decades, endosomal entrapment of delivered mRNAs vastly impedes therapeutic developments. In addition, the molecular mechanism of LNP-mediated mRNA delivery is poorly understood to guide further improvement through rational design. To tackle these challenges, we characterized LNP-mediated mRNA delivery using a library of small molecules targeting endosomal trafficking. We found that the expression of delivered mRNAs is greatly enhanced via inhibition of endocytic recycling in cells and in live mice. One of the most potent small molecules, endosidine 5 (ES5), interferes with recycling endosomes through Annexin A6, thereby promoting the release and expression of mRNA into the cytoplasm. Together, these findings suggest that targeting endosomal trafficking with small molecules is a viable strategy to potentiate the efficacy of mRNA-LNPs.


Asunto(s)
Endosomas , Liposomas , Nanopartículas , ARN Mensajero , Endosomas/metabolismo , Animales , ARN Mensajero/genética , ARN Mensajero/metabolismo , Nanopartículas/química , Ratones , Humanos , Lípidos/química , Técnicas de Transferencia de Gen , Endocitosis/efectos de los fármacos
13.
Biophys J ; 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38515299

RESUMEN

Comparative methods in molecular evolution and structural biology rely heavily upon the site-wise analysis of DNA sequence and protein structure, both static forms of information. However, it is widely accepted that protein function results from nanoscale nonrandom machine-like motions induced by evolutionarily conserved molecular interactions. Comparisons of molecular dynamics (MD) simulations conducted between homologous sites representative of different functional or mutational states can potentially identify local effects on binding interaction and protein evolution. In addition, comparisons of different (i.e., nonhomologous) sites within MD simulations could be employed to identify functional shifts in local time-coordinated dynamics indicative of logic gating within proteins. However, comparative MD analysis is challenged by the large fraction of protein motion caused by random thermal noise in the surrounding solvent. Therefore, properly denoised MD comparisons could reveal functional sites involving these machine-like dynamics with good accuracy. Here, we introduce ATOMDANCE, a user-interfaced suite of comparative machine learning-based denoising tools designed for identifying functional sites and the patterns of coordinated motion they can create within MD simulations. ATOMDANCE-maxDemon4.0 employs Gaussian kernel functions to compute site-wise maximum mean discrepancy between learned features of motion, thereby assessing denoised differences in the nonrandom motions between functional or evolutionary states (e.g., ligand bound versus unbound, wild-type versus mutant). ATOMDANCE-maxDemon4.0 also employs maximum mean discrepancy to analyze potential random amino acid replacements allowing for a site-wise test of neutral versus nonneutral evolution on the divergence of dynamic function in protein homologs. Finally, ATOMDANCE-Choreograph2.0 employs mixed-model analysis of variance and graph network to detect regions where time-synchronized shifts in dynamics occur. Here, we demonstrate ATOMDANCE's utility for identifying key sites involved in dynamic responses during functional binding interactions involving DNA, small-molecule drugs, and virus-host recognition, as well as understanding shifts in global and local site coordination occurring during allosteric activation of a pathogenic protease.

14.
J Physiol ; 602(5): 809-834, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38353596

RESUMEN

Breathing behaviour involves the generation of normal breaths (eupnoea) on a timescale of seconds and sigh breaths on the order of minutes. Both rhythms emerge in tandem from a single brainstem site, but whether and how a single cell population can generate two disparate rhythms remains unclear. We posit that recurrent synaptic excitation in concert with synaptic depression and cellular refractoriness gives rise to the eupnoea rhythm, whereas an intracellular calcium oscillation that is slower by orders of magnitude gives rise to the sigh rhythm. A mathematical model capturing these dynamics simultaneously generates eupnoea and sigh rhythms with disparate frequencies, which can be separately regulated by physiological parameters. We experimentally validated key model predictions regarding intracellular calcium signalling. All vertebrate brains feature a network oscillator that drives the breathing pump for regular respiration. However, in air-breathing mammals with compliant lungs susceptible to collapse, the breathing rhythmogenic network may have refashioned ubiquitous intracellular signalling systems to produce a second slower rhythm (for sighs) that prevents atelectasis without impeding eupnoea. KEY POINTS: A simplified activity-based model of the preBötC generates inspiratory and sigh rhythms from a single neuron population. Inspiration is attributable to a canonical excitatory network oscillator mechanism. Sigh emerges from intracellular calcium signalling. The model predicts that perturbations of calcium uptake and release across the endoplasmic reticulum counterintuitively accelerate and decelerate sigh rhythmicity, respectively, which was experimentally validated. Vertebrate evolution may have adapted existing intracellular signalling mechanisms to produce slow oscillations needed to optimize pulmonary function in mammals.


Asunto(s)
Calcio , Respiración , Animales , Neuronas/fisiología , Tronco Encefálico/fisiología , Mamíferos , Centro Respiratorio/fisiología
15.
J Physiol ; 602(12): 2763-2806, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38761133

RESUMEN

Hypoxia-inducible factor (HIF)-1α is continuously synthesized and degraded in normoxia. During hypoxia, HIF1α stabilization restricts cellular/mitochondrial oxygen utilization. Cellular stressors can stabilize HIF1α even during normoxia. However, less is known about HIF1α function(s) and sex-specific effects during normoxia in the basal state. Since skeletal muscle is the largest protein store in mammals and protein homeostasis has high energy demands, we determined HIF1α function at baseline during normoxia in skeletal muscle. Untargeted multiomics data analyses were followed by experimental validation in differentiated murine myotubes with loss/gain of function and skeletal muscle from mice without/with post-natal muscle-specific Hif1a deletion (Hif1amsd). Mitochondrial oxygen consumption studies using substrate, uncoupler, inhibitor, titration protocols; targeted metabolite quantification by gas chromatography-mass spectrometry; and post-mitotic senescence markers using biochemical assays were performed. Multiomics analyses showed enrichment in mitochondrial and cell cycle regulatory pathways in Hif1a deleted cells/tissue. Experimentally, mitochondrial oxidative functions and ATP content were higher with less mitochondrial free radical generation with Hif1a deletion. Deletion of Hif1a also resulted in higher concentrations of TCA cycle intermediates and HIF2α proteins in myotubes. Overall responses to Hif1amsd were similar in male and female mice, but changes in complex II function, maximum respiration, Sirt3 and HIF1ß protein expression and muscle fibre diameter were sex-dependent. Adaptive responses to hypoxia are mediated by stabilization of constantly synthesized HIF1α. Despite rapid degradation, the presence of HIF1α during normoxia contributes to lower mitochondrial oxidative efficiency and greater post-mitotic senescence in skeletal muscle. In vivo responses to HIF1α in skeletal muscle were differentially impacted by sex. KEY POINTS: Hypoxia-inducible factor -1α (HIF1α), a critical transcription factor, undergoes continuous synthesis and proteolysis, enabling rapid adaptive responses to hypoxia by reducing mitochondrial oxygen consumption. In mammals, skeletal muscle is the largest protein store which is determined by a balance between protein synthesis and breakdown and is sensitive to mitochondrial oxidative function. To investigate the functional consequences of transient HIF1α expression during normoxia in the basal state, myotubes and skeletal muscle from male and female mice with HIF1α knockout were studied using complementary multiomics, biochemical and metabolite assays. HIF1α knockout altered the electron transport chain, mitochondrial oxidative function, signalling molecules for protein homeostasis, and post-mitotic senescence markers, some of which were differentially impacted by sex. The cost of rapid adaptive responses mediated by HIF1α is lower mitochondrial oxidative efficiency and post-mitotic senescence during normoxia.


Asunto(s)
Subunidad alfa del Factor 1 Inducible por Hipoxia , Mitocondrias Musculares , Músculo Esquelético , Animales , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Femenino , Masculino , Músculo Esquelético/metabolismo , Ratones , Mitocondrias Musculares/metabolismo , Caracteres Sexuales , Homeostasis , Fibras Musculares Esqueléticas/metabolismo , Ratones Endogámicos C57BL , Consumo de Oxígeno/fisiología
16.
BMC Genomics ; 25(1): 121, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38281926

RESUMEN

BACKGROUND: Transcriptomes present a rich, multi-dimensional subset of genomics data. They provide broad insights into genetic sequence, and more significantly gene expression, across biological samples. This technology is frequently employed for describing the genetic response to experimental conditions and has created vast libraries of datasets which shed light on gene function across different tissues, diseases, diets and developmental stages in many species. However, public accessibility of these data is impeded by a lack of suitable software interfaces and databases with which to locate and analyse them. BODY: Here we present an update on the status of CrustyBase.org, an online resource for analysing and sharing crustacean transcriptome datasets. Since its release in October 2020, the resource has provided many thousands of transcriptome sequences and expression profiles to its users and received 19 new dataset imports from researchers across the globe. In this article we discuss user analytics which point towards the utilization of this resource. The architecture of the application has proven robust with over 99.5% uptime and effective reporting of bugs through both user engagement and the error logging mechanism. We also introduce several new features that have been developed as part of a new release of CrustyBase.org. Two significant features are described in detail, which allow users to navigate through transcripts directly by submission of transcript identifiers, and then more broadly by searching for encoded protein domains by keyword. The latter is a novel and experimental feature, and grants users the ability to curate gene families from any dataset hosted on CrustyBase in a matter of minutes. We present case studies to demonstrate the utility of these features. CONCLUSION: Community engagement with this resource has been very positive, and we hope that improvements to the service will further enable the research of users of the platform. Web-based platforms such as CrustyBase have many potential applications across life science domains, including the health sector, which are yet to be realised. This leads to a wider discussion around the role of web-based resources in facilitating an open and collaborative research community.


Asunto(s)
Programas Informáticos , Transcriptoma , Genómica/métodos , Bases de Datos Factuales , Fenotipo
17.
Am J Physiol Heart Circ Physiol ; 326(5): H1105-H1116, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38391313

RESUMEN

Whether cerebral sympathetic-mediated vasomotor control can be modulated by local brain activity remains unknown. This study tested the hypothesis that the application or removal of a cognitive task during a cold pressor test (CPT) would attenuate and restore decreases in cerebrovascular conductance (CVC), respectively. Middle cerebral artery blood velocity (transcranial Doppler) and mean arterial pressure (finger photoplethysmography) were examined in healthy adults (n = 16; 8 females and 8 males) who completed a control CPT, followed by a CPT coupled with a cognitive task administered either 1) 30 s after the onset of the CPT and for the duration of the CPT or 2) at the onset of the CPT and terminated 30 s before the end of the CPT (condition order was counterbalanced). The major finding was that the CPT decreased the index of CVC, and such decreases were abolished when a cognitive task was completed concurrently and restored when the cognitive task was removed. As a secondary experiment, vasomotor interactions between sympathetic transduction pathways (α1-adrenergic and Y1-peptidergic) and compounds implicated in cerebral blood flow control [adenosine, and adenosine triphosphate (ATP)] were explored in isolated porcine cerebral arteries (wire myography). The data reveal α1-receptor agonism potentiated vasorelaxation modestly in response to adenosine, and preexposure to ATP attenuated contractile responses to α1-agonism. Overall, the data suggest a cognitive task attenuates decreases in CVC during sympathoexcitation, possibly related to an interaction between purinergic and α1-adrenergic signaling pathways.NEW & NOTEWORTHY The present study demonstrates that the cerebrovascular conductance index decreases during sympathoexcitation and this response can be positively and negatively modulated by the application or withdrawal of a nonexercise cognitive task. Furthermore, isolated vessel experiments reveal that cerebral α1-adrenergic agonism potentiates adenosine-mediated vasorelaxation and ATP attenuates α1-adrenergic-mediated vasocontraction.


Asunto(s)
Adenosina Trifosfato , Simpaticolíticos , Adulto , Masculino , Femenino , Humanos , Animales , Porcinos , Velocidad del Flujo Sanguíneo/fisiología , Adrenérgicos , Adenosina/farmacología , Circulación Cerebrovascular/fisiología , Presión Sanguínea/fisiología , Frío
18.
Am J Physiol Heart Circ Physiol ; 327(1): H45-H55, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38700474

RESUMEN

Patients with heart failure with reduced ejection fraction (HFrEF) have exaggerated sympathoexcitation and impaired peripheral vascular conductance. Evidence demonstrating consequent impaired functional sympatholysis is limited in HFrEF. This study aimed to determine the magnitude of reduced limb vascular conductance during sympathoexcitation and whether functional sympatholysis would abolish such reductions in HFrEF. Twenty patients with HFrEF and 22 age-matched controls performed the cold pressor test (CPT) [left foot 2-min in -0.5 (1)°C water] alone and with right handgrip exercise (EX + CPT). Right forearm vascular conductance (FVC), forearm blood flow (FBF), and mean arterial pressure (MAP) were measured. Patients with HFrEF had greater decreases in %ΔFVC and %ΔFBF during CPT (both P < 0.0001) but not EX + CPT (P = 0.449, P = 0.199) compared with controls, respectively. %ΔFVC and %ΔFBF decreased from CPT to EX + CPT in patients with HFrEF (both P < 0.0001) and controls (P = 0.018, P = 0.015), respectively. MAP increased during CPT and EX + CPT in both groups (all P < 0.0001). MAP was greater in controls than in patients with HFrEF during EX + CPT (P = 0.025) but not CPT (P = 0.209). In conclusion, acute sympathoexcitation caused exaggerated peripheral vasoconstriction and reduced peripheral blood flow in patients with HFrEF. Handgrip exercise abolished sympathoexcitatory-mediated peripheral vasoconstriction and normalized peripheral blood flow in patients with HFrEF. These novel data reveal intact functional sympatholysis in the upper limb and suggest that exercise-mediated, local control of blood flow is preserved when cardiac limitations that are cardinal to HFrEF are evaded with dynamic handgrip exercise.NEW & NOTEWORTHY Patients with HFrEF demonstrate impaired peripheral blood flow regulation, evidenced by heightened peripheral vasoconstriction that reduces limb blood flow in response to physiological sympathoexcitation (cold pressor test). Despite evidence of exaggerated sympathetic vasoconstriction, patients with HFrEF demonstrate a normal hyperemic response to moderate-intensity handgrip exercise. Most importantly, acute, simultaneous handgrip exercise restores normal limb vasomotor control and vascular conductance during acute sympathoexcitation (cold pressor test), suggesting intact functional sympatholysis in patients with HFrEF.


Asunto(s)
Ejercicio Físico , Antebrazo , Fuerza de la Mano , Insuficiencia Cardíaca , Volumen Sistólico , Sistema Nervioso Simpático , Vasoconstricción , Humanos , Masculino , Sistema Nervioso Simpático/fisiopatología , Femenino , Insuficiencia Cardíaca/fisiopatología , Persona de Mediana Edad , Antebrazo/irrigación sanguínea , Anciano , Flujo Sanguíneo Regional , Estudios de Casos y Controles , Función Ventricular Izquierda , Frío , Presión Arterial , Descanso
19.
Radiology ; 312(1): e233265, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39012250

RESUMEN

Background Pre-existing emphysema is recognized as an indicator of future worsening in patients with chronic obstructive pulmonary disease (COPD) when observed through CT imaging. However, it remains uncertain whether additional factors, such as the spatial compactness of CT emphysema, might also serve as predictors of disease progression. Purpose To evaluate the relationship between the compactness of CT emphysema voxels and emphysema progression. Materials and Methods This secondary analysis uses data from the prospective Canadian Cohort Obstructive Lung Disease (CanCOLD) study, examining CT images obtained in participants with and without COPD at baseline and a 3-year follow-up time point (November 2009 to November 2018). Measurements of forced expiratory volume in first second of expiration (FEV1) and diffusing capacity of lung for carbon monoxide (DLco) were collected. The normalized join-count (NJC) measurement from baseline CT images and lung density (LD) changes were analyzed. Emphysema progression was defined as an annualized LD change of less than half an SD below the mean of the participants without COPD with no smoking history. Multivariable linear and logistic regression models were used to assess the association between baseline CT NJC measurements and the annualized change in LD, FEV1, DLco, and emphysema progression versus nonprogression. Results A total of 524 participants (mean age, 66 years ± 10 [SD]; 293 male) (FEV1 percent predicted, 88% ± 19; FEV1/FVC, 67% ± 9; DLco percent predicted, 105% ± 25) were analyzed, 187 (36%) of whom had COPD. CT NJC was associated with the annualized change in LD (P < .001), FEV1 (P = .02), and DLco (P = .01). Additionally, CT NJC predicted emphysema progression versus nonprogression (odds ratio, 2.24; 95% CI: 1.37, 3.50; P < .001). Conclusion The spatial distribution, or "compactness," of CT emphysema voxels predicted emphysema progression in individuals with and without COPD. ClinicalTrials.gov Identifier: NCT00920348 © RSNA, 2024 Supplemental material is available for this article.


Asunto(s)
Progresión de la Enfermedad , Enfermedad Pulmonar Obstructiva Crónica , Enfisema Pulmonar , Tomografía Computarizada por Rayos X , Humanos , Masculino , Femenino , Enfisema Pulmonar/diagnóstico por imagen , Enfisema Pulmonar/fisiopatología , Tomografía Computarizada por Rayos X/métodos , Estudios Prospectivos , Anciano , Persona de Mediana Edad , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico por imagen , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Canadá , Pulmón/diagnóstico por imagen , Pulmón/fisiopatología , Valor Predictivo de las Pruebas
20.
Artículo en Inglés | MEDLINE | ID: mdl-38336872

RESUMEN

OBJECTIVES: Interstitial lung disease (ILD) in connective tissue diseases (CTD) have highly variable morphology. We aimed to identify imaging features and their impact on ILD progression, mortality and immunosuppression response. METHODS: Patients with CTD-ILD had high-resolution chest computed tomography (HRCT) reviewed by expert radiologists blinded to clinical data for overall imaging pattern (usual interstitial pneumonia [UIP]; non-specific interstitial pneumonia [NSIP]; organizing pneumonia [OP]; fibrotic hypersensitivity pneumonitis [fHP]; and other). Transplant-free survival and change in percent-predicted forced vital capacity (FVC) were compared using Cox and linear mixed effects models adjusted for age, sex, smoking, and baseline FVC. FVC decline after immunosuppression was compared with pre-treatment. RESULTS: Of 645 CTD-ILD patients, the frequent CTDs were systemic sclerosis (n = 215), rheumatoid arthritis (n = 127), and inflammatory myopathies (n = 100). NSIP was the most common pattern (54%), followed by UIP (20%), fHP (9%), and OP (5%). Compared with UIP, FVC decline was slower for NSIP (1.1%/year, 95%CI 0.2, 1.9) and OP (3.5%/year, 95%CI 2.0, 4.9), and mortality was lower for NSIP (HR 0.65, 95%CI 0.45, 0.93) and OP (HR 0.18, 95%CI 0.05, 0.57), but higher in fHP (HR 1.58, 95%CI 1.01, 2.40). The extent of fibrosis also predicted FVC decline and mortality. After immunosuppression, FVC decline was slower compared with pre-treatment in NSIP (by 2.1%/year, 95%CI 1.4, 2.8), with no change for UIP or fHP. CONCLUSION: Multiple radiologic patterns are possible in CTD-ILD, including a fHP pattern. NSIP and OP were associated with better outcomes and response to immunosuppression, while fHP had worse survival compared with UIP.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA