Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Int J Mol Sci ; 23(19)2022 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-36233025

RESUMEN

The synthetic polymers used to protect artworks from deterioration process can be colonized by the fungi and bacteria responsible for the biodeterioration process. In this study, the susceptibility of synthetic polyacrylics and polyurethane resins to microorganisms (Aspergillus niger ATCC 9642, Aureobasidium pullulans ATCC 15233, Chaetomium globosum ATCC 6205, Cladosporium cladosporioides ATCC 16022, Alternaria alternata BC01, Penicillium citrinum LS1 and Pseudomonas aeruginosa ATCC 9027) was investigated. The microbial attack was simulated alone and with a biocide and the related growth was observed up to 21 days for bacteria and 28 days for fungi. The polyacrylic and polyurethane resins were subjected to microbial attack, regardless of the biocide treatment, with a fungal growth from 60% to the complete coverage of the plate surface. Penicillium citrinum showed the greatest adaptation ability and was found in all the examined resins. P. aeruginosa was visible in all the different resins, regardless of the presence of biocide. An environmental scanning electron microscope (ESEM) revealed the presence of fungal conidia and hyphae in the inoculated resins and the Fourier transform IR spectroscopy (FTIR-ATR) indicated chemical transformations in the IR spectra, particularly the hydrolysis of esters, with some differences between the polyacrylic and polyurethane resins, which were probably due to their different chemical features. Overall, our data stress that the chemical, physical and biological deterioration caused by microorganisms capable of degrading synthetic polymers is still a problem in art restoration and that new strategies must be considered to counteract this phenomenon.


Asunto(s)
Desinfectantes , Poliuretanos , Bacterias , Ésteres , Hongos , Penicillium , Polímeros , Poliuretanos/farmacología
2.
Int J Mol Sci ; 24(1)2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36613943

RESUMEN

Cytolethal distending toxin (CDT) is produced by a range of Gram-negative pathogenic bacteria such as Campylobacter jejuni. CDT represents an important virulence factor that is a heterotrimeric complex composed of CdtA, CdtB, and CdtC. CdtA and CdtC constitute regulatory subunits whilst CdtB acts as the catalytic subunit exhibiting phosphatase and DNase activities, resulting in cell cycle arrest and cell death. Extracellular vesicle (EV) secretion is an evolutionarily conserved process that is present throughout all kingdoms. Mammalian EVs play important roles in regular cell-to-cell communications but can also spread pathogen- and host-derived molecules during infections to alter immune responses. Here, we demonstrate that CDT targets the endo-lysosomal compartment, partially evading lysosomal degradation and exploiting unconventional secretion (EV release), which is largely involved in bacterial infections. CDT-like effects are transferred by Caco-2 cells to uninfected heterologous U937 and homologous Caco-2 cells. The journey of EVs derived from CDT-treated Caco-2 cells is associated with both intestinal and myeloid tumour cells. EV release represents the primary route of CDT dissemination, revealing an active toxin as part of the cargo. We demonstrated that bacterial toxins could represent suitable tools in cancer therapy, highlighting both the benefits and limitations. The global cell response involves a moderate induction of apoptosis and autophagic features may play a protective role against toxin-induced cell death. EVs from CDT-treated Caco-2 cells represent reliable CDT carriers, potentially suitable in colorectal cancer treatments. Our data present a potential bacterial-related biotherapeutic supporting a multidrug anticancer protocol.


Asunto(s)
Toxinas Bacterianas , Campylobacter jejuni , Humanos , Toxinas Bacterianas/farmacología , Toxinas Bacterianas/metabolismo , Células CACO-2 , Campylobacter jejuni/metabolismo , Proliferación Celular , Bacterias Gramnegativas/metabolismo , Células U937
3.
World J Microbiol Biotechnol ; 38(12): 229, 2022 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-36149541

RESUMEN

This research investigated the characteristics of Zalaria obscura LS31012019 in terms of growth ability in different media (SDB, YPD and TSB) and temperatures (22, 25 and 37 °C), utilization of several carbon sources (Glucose, Fructose, Lactose, Sucrose, Xylose, Glycerol and Mannitol at 5, 2 and 1%) and several biochemical features (total protein content, Glutathione, pigments), in comparison with those of the phylogenetically related Aureobasidium pullulans ATCC 15233. The best growth of Z. obscura LS31012019 was obtained in YPD at 25 °C with the highest OD value (0.45) after 144 h of incubation, similar to that of A. pullulans ATCC 15233 (0.48). Glucose resulted the preferred carbon source for both the considered yeasts but also sucrose resulted in efficacy supporting the growth of Z. obscura LS31012019 and A. pullulans ATCC 15233, for their ability in converting sucrose to glucose and fructose and the latter into glucose. Interestingly, Z. obscura LS31012019 utilized also glycerol and mannitol. The biochemical analysis showed the similarity of protein profile in Z. obscura LS31012019 and A. pullulans ATCC 15233 (from 90 to 20 kDa) and a reduced GSH content (0.321 and 0.233 µmol/mg). The pigments extraction with hexane generated a yellow oleaginous pellet in both the strains, while a yellow solid matrix more intensely coloured in A. pullulans ATTC 15233 was visible with the following solvent extractions. Overall, our data showed that Z. obscura LS31012019 can grow in different media and temperatures and utilize carbon sources apart from glucose and sucrose, shifting to a non-fermentative metabolism. These results improve the information regarding the characteristics of Z. obscura, opening a new field of investigation for the possible application of new species of black yeasts in human application.


Asunto(s)
Ascomicetos , Ascomicetos/clasificación , Ascomicetos/metabolismo , Carbono/metabolismo
4.
Appl Microbiol Biotechnol ; 104(2): 509-514, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31802168

RESUMEN

Materials rich in organic and inorganic compounds, such as building materials or paints, represent an excellent substrate for the development of moulds. Several conditions affect mould's growth on cementitious materials, such as nutrient and water availability, temperature, pH and moisture. Microorganisms, and especially moulds, attack these surfaces and contribute to their erosion, thereby reducing the life of the structure itself and negatively affecting human health through inhalation, ingestion and dermal contact with spores. Interventions are based on The European Communities Council Directive 89/106/EEC, that obliges the use of materials, products and building elements that are resistant to fungi and other forms of degradation, and that do not constitute a health risk for users and the environment. This mini-review summarises the current state of problems related to mould growth on cementitious building materials, emphasising new innovative approaches for limiting or contrasting their growth. In particular, the use of nanoparticles and the related nanomaterials as well as the potential use of new "biocides" from natural sources is discussed.


Asunto(s)
Materiales de Construcción/microbiología , Hongos/crecimiento & desarrollo , Compuestos Inorgánicos/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Temperatura
5.
Adv Exp Med Biol ; 1282: 115-125, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32329029

RESUMEN

Campylobacter acts using complex strategies to establish and promote intestinal infections. After ingestion via contaminated foods, this bacterium invades and can survive within the intestinal cells, also inducing epithelial translocation of non-invasive intestinal bacteria. In this investigation, the ability of human and avian C. jejuni and C. coli isolates to survive within two different intestinal epithelial cells lines, Caco-2 and INT 407, as well as the intestinal translocation phenomenon, was assessed. Our data demonstrated that both C. jejuni and C. coli strains survived in Caco-2 (81.8% and 100% respectively) and INT 407 monolayers (72.7% and 100% respectively) within the first 24 h post-infection period, with a progressive reduction in the prolonged period of 48 h and 72 h post-infection. The translocation of the non-invasive E. coli 60/06 FB was remarkably increased in C. jejuni treated Caco-2 monolayers (2.36 ± 0.42 log cfu/mL) (P < 0.01) and less in those treated with C. coli (1.2 ± 0.34 log cfu/mL), compared to E. coli 60/06 FB alone (0.37 ± 0.14 log cfu/mL). Our results evidenced the ability of both human and avian strains of C. jejuni and C. coli to efficiently survive within intestinal cells and induce the translocation of a non-invasive pathogen. Overall, these findings stress how this pathogen can interact with host cells and support the hypothesis that defects in the intestinal barrier function induced by Campylobacter spp. could have potentially negative implications for human health.


Asunto(s)
Traslocación Bacteriana , Aves/microbiología , Campylobacter coli/fisiología , Campylobacter jejuni/fisiología , Animales , Células CACO-2 , Infecciones por Campylobacter , Línea Celular , Escherichia coli/fisiología , Humanos
6.
Int J Mol Sci ; 21(6)2020 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-32210050

RESUMEN

The Gram-negative Campylobacter jejuni is a major cause of foodborne gastroenteritis in humans worldwide. The cytotoxic effects of Campylobacter have been mainly ascribed to the actions of the cytolethal distending toxin (CDT): it is mandatory to put in evidence risk factors for sequela development, such as reactive arthritis (ReA) and Guillain-Barré syndrome (GBS). Several researches are directed to managing symptom severity and the possible onset of sequelae. We found for the first time that rapamycin (RM) is able to largely inhibit the action of C. jejuni lysate CDT in U937 cells, and to partially avoid the activation of specific sub-lethal effects. In fact, we observed that the ability of this drug to redirect lysosomal compartment, stimulate ER-remodeling (highlighted by ER-lysosome and ER-mitochondria contacts), protect mitochondria network, and downregulate CD317/tetherin, is an important component of membrane microdomains. In particular, lysosomes are involved in the process of the reduction of intoxication, until the final step of lysosome exocytosis. Our results indicate that rapamycin confers protection against C. jejuni bacterial lysate insults to myeloid cells.


Asunto(s)
Antígeno 2 del Estroma de la Médula Ósea/metabolismo , Campylobacter jejuni/fisiología , Membrana Celular/metabolismo , Retículo Endoplásmico/metabolismo , Exocitosis , Lisosomas/metabolismo , Biomarcadores , Muerte Celular/efectos de los fármacos , Proliferación Celular , Células Cultivadas , Retículo Endoplásmico/efectos de los fármacos , Estrés del Retículo Endoplásmico , Exocitosis/efectos de los fármacos , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Prohibitinas , Transducción de Señal/efectos de los fármacos , Sirolimus/farmacología , Células U937/metabolismo , Células U937/microbiología
7.
Appl Microbiol Biotechnol ; 103(14): 5607-5616, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31104098

RESUMEN

The potential antifungal activity of the marine alkaloid 2,2-bis(6-bromo-3-indolyl)ethylamine (URB 1204) was firstly assessed by minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) against different fungi. Then, URB 1204 was applied to a building material experimentally contaminated with selected fungi, in single and mixed species, for determining its potential application in preventing fungal growth. In addition, the over-time protection efficacy of URB 1204 was verified, subjecting the treated building surfaces to natural fungal contamination for 6 weeks. URB 1204 showed different antifungal activity, with the lowest MIC value (16 µg/mL) observed against Aspergillus flavus IDRA01, Cladosporium cladosporioides ATCC 16022 and Mucor circinelloides EHS03, and the highest MIC (128 µg/mL) against the dermatophytes strains. The growth Alternaria alternata BC01, Penicillium citrinum LS1, and C. cladosporioides ATCC 16022 on building material treated with URB 1204 water solution (64 µg/mL) was remarkably reduced with an effect time-dependent and related to the examined fungi. In terms of over-time efficacy, the samples treated with URB 1204 showed a delay of fungal growth comparable with that of a commercial antifungal product. These findings evidenced not only the ability of 2,2-bis(6-bromo-3-indolyl)ethylamine to limit the growth of different fungal species on building material but also to provide long-term protection against mold growth and proliferation, opening new perspectives for URB 1204 as preventive agent.


Asunto(s)
Alcaloides/farmacología , Materiales de Construcción/microbiología , Etilaminas/farmacología , Hongos/efectos de los fármacos , Fungicidas Industriales/farmacología , Indoles/farmacología , Aspergillus flavus/efectos de los fármacos , Aspergillus flavus/crecimiento & desarrollo , Hongos/crecimiento & desarrollo , Pruebas de Sensibilidad Microbiana , Penicillium/efectos de los fármacos , Penicillium/crecimiento & desarrollo
8.
J Food Sci Technol ; 56(8): 3962-3967, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31413422

RESUMEN

The effect of the cell-free culture supernatants (CFCSs) from different Lacobacillus spp. on growth ability of Cronobacter sakazakii ATCC 29544 was investigated by time-killing studies. The antimicrobial effect was evaluated using crude and 2.5 × concentrated CFCSs. Most of the CFCSs showed a dose-dependent antimicrobial activity, with the greatest C. sakazakii growth inhibition exerted by the CFCS 2.5 × of Lactobacillus casei rhamnosus ATCC 7469. Indeed, C. sakazakii growth was completely inhibited after 4 h of incubation with the crude CFCSs of L. casei rhamnosus and Lactobacillus acidophilus and after only 2 h using the related 2.5 × CFCSs. The flow cytometric analysis revealed that CFCSs altered the permeability of C. sakazakii cell membrane, showing 55% of live cells after 30 min of treatment with 2.5 × CFCSs of L. casei rhamnosus and L. acidophilus, reaching 1% of live cells after 2 h of exposure. The CFCSs of L. casei rhamnosus and L. acidophilus have showed anti-Cronobacter activity, determining a progressively inhibition of C. sakazakii growth as result of alterations in its membrane permeability.

9.
J Food Sci Technol ; 55(2): 749-759, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29391640

RESUMEN

Vibrio parahaemolyticus is part of the natural microflora of estuarine and coastal marine waters and can be also present in seafood, especially shellfish and bivalve molluscs. In this study we compared the reference cultural method ISO 6887-3 with two molecular methods, multiplex PCR and real-time PCR, for the detection of two distinct genetic markers (tlh species-specific gene and tdh virulence gene) of V. parahaemolyticus in bivalve mollusc. The analyses were performed on clams inoculated with V. parahaemolyticus ATCC 43996 at T0 and after a 3 and 6 h of pre-enrichment in alkaline saline peptone water. Counts on agar plates were largely inaccurate, probably due to other Vibrio species grown on the TCBS selective agar. Multiplex PCR assays, performed using primers pairs for tdh and tlh genes, showed a detection limit of 104 CFU/g of shell stock within 6 h of pre-enrichment, respecting however the action level indicated by the National Seafood Sanitation Program guideline. Detection by tdh gene in real-time PCR reached the definitely highest sensitivity in shorter times, 101 CFU/g after 3 h of pre-enrichment, while the sensitivity for the tlh gene was not promising, detecting between 105 and 106 CFU/g after 6 h of pre-enrichment. Our findings provide a rapid routine method of detection of V. parahaemolyticus based on tdh gene by real-time PCR for commercial seafood analysis to identify the risk of gastrointestinal diseases.

10.
Ig Sanita Pubbl ; 74(1): 59-69, 2018.
Artículo en Italiano | MEDLINE | ID: mdl-29734323

RESUMEN

The risks associated with the preparation of galenic products prepared at a local pharmacy have been hypothesized and evaluated, also carrying out a microbiological environmental monitoring of the used surfaces. Three possible situations risk were evaluated: the first one related to the physical separation of the production phases (medium risk of occurrence), the second to the failure to restore hygienic conditions in the transition from different formulations (high risk of occurrence), the third to contamination caused by the operator itself (unacceptable risk of occurrence). This last analysis was supported by the microbiological data of environmental sampling that showed procedural errors of the operator during the cleaning phases. From our assessments it is advisable to apply a simplified system of self-control based on risk assessment and validation of critical phases including cleaning procedures for the galenic preparations.


Asunto(s)
Monitoreo del Ambiente , Higiene , Preparaciones Farmacéuticas/normas , Medición de Riesgo/métodos , Humanos , Farmacia
11.
Appl Microbiol Biotechnol ; 100(15): 6767-6777, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27102127

RESUMEN

Lactic acid bacteria (LAB) can interfere with pathogens through different mechanisms; one is the production of biosurfactants, a group of surface-active molecules, which inhibit the growth of potential pathogens. In the present study, biosurfactants produced by Lactobacillus reuteri DSM 17938, Lactobacillus acidophilus DDS-1, Lactobacillus rhamnosus ATCC 53103, and Lactobacillus paracasei B21060 were dialyzed (1 and 6 kDa) and characterized in term of reduction of surface tension and emulsifying activity. Then, aliquots of the different dialyzed biosurfactants were added to Streptococcus mutans ATCC 25175 and Streptococcus oralis ATCC 9811 in the culture medium during the formation of biofilm on titanium surface and the efficacy was determined by agar plate count, biomass analyses, and flow cytometry. Dialyzed biosurfactants showed abilities to reduce surface tension and to emulsifying paraffin oil. Moreover, they significantly inhibited the adhesion and biofilm formation on titanium surface of S. mutans and S. oralis in a dose-dependent way, as demonstrated by the remarkable decrease of cfu/ml values and biomass production. The antimicrobial properties observed for dialyzed biosurfactants produced by the tested lactobacilli opens future prospects for their use against microorganisms responsible of oral diseases.


Asunto(s)
Antibacterianos/metabolismo , Biopelículas/crecimiento & desarrollo , Lacticaseibacillus paracasei/metabolismo , Lacticaseibacillus rhamnosus/metabolismo , Lactobacillus acidophilus/metabolismo , Limosilactobacillus reuteri/metabolismo , Streptococcus mutans/crecimiento & desarrollo , Streptococcus oralis/crecimiento & desarrollo , Tensoactivos/metabolismo , Adhesión Bacteriana/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Streptococcus mutans/efectos de los fármacos , Streptococcus oralis/efectos de los fármacos , Tensión Superficial/efectos de los fármacos , Tensoactivos/farmacología , Titanio
12.
Ig Sanita Pubbl ; 71(6): 589-99, 2015.
Artículo en Italiano | MEDLINE | ID: mdl-26847272

RESUMEN

Disinfection of work surfaces is a critical step in the food industry. In this study, we evaluated the antimicrobial efficacy of four commercial products against target pathogens, using the suspension test indicated in the European Standard EN 1276: 2009. The data obtained indicate that the product containing benzalkonium chloride ("A") was the most effective with a logarithmic reduction > 5 against all microorganisms after 5 minutes of contact in simulated dirty and clean conditions. Efficacy of the product based on sodium hypochlorite ("B") was dependent on the experimental conditions applied, while for products containing hydrogen peroxide and citric acid ("C" and "D" respectively), 15 min of contact were required, in both the experimental conditions, to obtain a logarithmic reduction> 5. Exposure time to disinfectants and applied conditions appear to be important in reducing bacterial load to safe levels in the food industry.


Asunto(s)
Antiinfecciosos/farmacología , Desinfección/métodos , Industria de Alimentos
13.
Clin Oral Investig ; 18(8): 2001-13, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24458367

RESUMEN

OBJECTIVE: The aim of this study was to test the effect of Carvacrol against oral pathogens and their preformed biofilms on titanium disc surface. METHODS: Minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC) and biofilm inhibitory concentration (BIC) were performed to evaluate Carvacrol antibacterial activity, while flow cytometry (FCM) was used to verify the Carvacrol effect on esterase activity and membrane permeability. Carvacrol was tested in vitro on single- and multi-species biofilms formed on titanium disc by Streptococcus mutans ATCC 25175, Porphyromonas gingivalis ATCC 33277 or Fusobacterium nucleatum ATCC 25586, in different combinations, comparing its effect to that of chlorhexidine. RESULTS: The pathogens were sensitive to Carvacrol with MICs and MBCs values of 0.25 % and 0.50 % and BICs of 0.5 % for S. mutans ATCC 25175 and 1 % for P. gingivalis ATCC 33277 and F. nucleatum ATCC 25586. FCM analysis showed that treatment of planktonic cultures with Carvacrol caused an increase of damaged cells and a decrement of bacteria with active esterase activity. Moreover, Carvacrol demonstrated greater biofilm formation preventive property compared to chlorhexidine against titanium-adherent single- and multi-specie biofilms, with statistically significant values. CONCLUSIONS: Carvacrol showed inhibitory activity against the tested oral pathogens and biofilm formation preventive property on their oral biofilm; then, it could be utilized to control and prevent the colonization of microorganisms with particular significance in human oral diseases. CLINICAL RELEVANCE: This natural compound may be proposed in daily hygiene formulations or as an alternative agent supporting traditional antimicrobial protocols to prevent periodontal diseases in implanted patients.


Asunto(s)
Antiinfecciosos/farmacología , Bacterias/efectos de los fármacos , Biopelículas/efectos de los fármacos , Monoterpenos/farmacología , Plancton/efectos de los fármacos , Titanio , Bacterias/clasificación , Adhesión Bacteriana/efectos de los fármacos , Cimenos , Citometría de Flujo , Técnicas In Vitro , Pruebas de Sensibilidad Microbiana
14.
Antonie Van Leeuwenhoek ; 103(5): 979-88, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23314927

RESUMEN

Campylobacter jejuni is a major gastrointestinal pathogen that colonizes host mucosa via interactions with extracellular matrix proteins such as fibronectin. The aim of this work was to study in vitro the adhesive properties of C. jejuni ATCC 33291 and C. jejuni 241 strains, in both culturable and viable but non-culturable (VBNC) forms. To this end, the expression of the outer-membrane protein CadF, which mediates C. jejuni binding to fibronectin, was evaluated. VBNC bacteria were obtained after 46-48 days of incubation in freshwater at 4 °C. In both cellular forms, the expression of the cadF gene, assessed at different time points by RT-PCR, was at high levels until the third week of VBNC induction, while the intensity of the signal declined during the last stage of incubation. CadF protein expression by the two C. jejuni strains was analysed using 2-dimensional electrophoresis and mass spectrometry; the results indicated that the protein, although at low levels, is also present in the VBNC state. Adhesion assays with culturable and VBNC cells, evaluated on Caco-2 monolayers, showed that non-culturable bacteria retain their ability to adhere to intestinal cells, though at a reduced rate. Our results demonstrate that the C. jejuni VBNC population maintains an ability to adhere and this may thus have an important role in the pathogenicity of this microorganism.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/biosíntesis , Campylobacter jejuni/genética , Campylobacter jejuni/efectos de la radiación , Proteínas Portadoras/biosíntesis , Regulación Bacteriana de la Expresión Génica , Adhesión Bacteriana , Células CACO-2 , Campylobacter jejuni/crecimiento & desarrollo , Frío , Electroforesis en Gel Bidimensional , Perfilación de la Expresión Génica , Humanos , Espectrometría de Masas , Viabilidad Microbiana , Reacción en Cadena en Tiempo Real de la Polimerasa , Factores de Tiempo
15.
J Pharm Sci ; 112(9): 2389-2392, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37453527

RESUMEN

LEDs development has attracted attention over conventional mercury lamps for the tiny size, high efficiency, long lifetime, low operating temperature. The antimicrobial effectiveness of traditional UV-lamps radiation (wavelength of 254 nm) compared to UV-C LEDs (LED1 wavelength range 275-286 nm and LED2 range 260-270 nm) was carried out, for possible applications to automated sterile drug compounding. The UV lamp and the tested UV-LED devices remarkably reduced microbial load, following a time-dose response, but the best performance was evidenced by LED1, which guaranteed the complete inactivation of high concentrations of bacteria, yeasts, and spores at doses between 200 and 2000 J/m2.


Asunto(s)
Desinfección , Rayos Ultravioleta , Viabilidad Microbiana , Composición de Medicamentos , Bacterias
16.
Pharmaceuticals (Basel) ; 16(2)2023 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-37259288

RESUMEN

A small library of 6-O-sucrose monoester surfactants has been synthesized and tested against various microorganisms. The synthetic procedure involved a modified Mitsunobu reaction, which showed improved results compared to those present in the literature (higher yields and larger scope). The antifungal activities of most of these glycolipids were satisfactory. In particular, sucrose palmitoleate (URB1537) showed good activity against Candida albicans ATCC 10231, Fusarium spp., and Aspergillus fumigatus IDRAH01 (MIC value: 16, 32, 64 µg/mL, respectively), and was further characterized through radical scavenging, anti-inflammatory, and biocompatibility tests. URB1537 has been shown to control the inflammatory response and to have a safe profile.

17.
Antibiotics (Basel) ; 12(10)2023 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-37887201

RESUMEN

Glycolipids are biocompatible and biodegradable amphiphilic compounds characterized by a great scientific interest for their potential applications in various technological areas, including pharmaceuticals, cosmetics, agriculture, and food production. This report summarizes the available synthetic methodologies, physicochemical properties, and biological activity of sugar fatty acid ester surfactants, with a particular focus on 6-O-glucose, 6-O-mannose, 6-O-sucrose, and 6'-O-lactose ones. In detail, the synthetic approaches to this class of compounds, such as enzymatic lipase-catalyzed and traditional chemical (e.g., acyl chloride, Steglich, Mitsunobu) esterifications, are reported. Moreover, aspects related to the surface activity of these amphiphiles, such as their ability to decrease surface tension, critical micelle concentration, and emulsifying and foaming ability, are described. Biological applications with a focus on the permeability-enhancing effect across the skin or mucosa, antimicrobial and antifungal activities, as well as antibiofilm properties, are also presented. The information reported here on sugar-based ester surfactants is helpful to broaden the interest and the possible innovative applications of this class of amphiphiles in different technological fields in the future.

18.
Curr Microbiol ; 64(4): 371-8, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22271268

RESUMEN

The aim of this research was to determine the potential probiotic activity of Lactobacillus acidophilus ATCC 4356 against several human Campylobacter jejuni isolates. The ability to inhibit the pathogen's growth was evaluated by co-culture experiments as well as by antimicrobial assays with cell-free culture supernatant (CFCS), while interference with adhesion/invasion to intestinal Caco-2 cells was studied by exclusion, competition, and displacement tests. In the co-culture experiments L. acidophilus ATCC 4356 strain reduced the growth of C. jejuni with variable percentages of inhibition related to the contact time. The CFCS showed inhibitory activity against C. jejuni strains, stability to low pH, and thermal treatment and sensitivity to proteinase K and trypsin. L. acidophilus ATCC 4356 was able to reduce the adhesion and invasion to Caco-2 cells by most of the human C. jejuni strains. Displacement and exclusion mechanisms seem to be the preferred modalities, which caused a significant reduction of adhesion/invasion of pathogens to intestinal cells. The observed inhibitory properties of L. acidophilus ATCC 4356 on growth ability and on cells adhesion/invasion of C. jejuni may offer potential use of this strain for the management of Campylobacter infections.


Asunto(s)
Antibiosis , Adhesión Bacteriana , Campylobacter jejuni/fisiología , Lactobacillus acidophilus/fisiología , Antibacterianos/metabolismo , Antibacterianos/farmacología , Células CACO-2 , Campylobacter jejuni/crecimiento & desarrollo , Medios de Cultivo/química , Endopeptidasa K/metabolismo , Células Epiteliales/microbiología , Humanos , Concentración de Iones de Hidrógeno , Lactobacillus acidophilus/crecimiento & desarrollo , Lactobacillus acidophilus/metabolismo , Viabilidad Microbiana/efectos de los fármacos , Viabilidad Microbiana/efectos de la radiación , Temperatura , Tripsina/metabolismo
19.
Fungal Biol ; 126(11-12): 817-825, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36517149

RESUMEN

The role of melanin in Aureobasidium pullulans ATCC 15233 and Zalaria obscura LS31012019, under simulated osmotic, oxidative, and high temperature stress conditions, on the susceptibility to essential oils (EOs) or antifungals and on the resistance to UV-C radiation was investigated. 93.6% of melanized A. pullulans and 92% of Z. obscura survived to 40 °C for 1 h compared to 77% and 76% of the non-melanized ones, while both yeasts tolerated a high concentration of NaCl (up to 30%) and H2O2 (up to 400 mM) regardless of melanin production. Higher EOs antifungal efficacy was observed in non-melanized cells (growth inhibition zone >30 mm) compared to the melanized ones (25 mm). Similarly, the lowest Minimum Inhibitory Concentrations (MIC) and Minimum Fungicidal Concentration (MFC) values were evidenced for Fluconazole, Clotrimazole, Bifonazole and Amphotericin in the non-melanized fungi. Increasing UV-C intensity (up to 2004.5 J/m2) caused total death in the non-melanized strains compared to about 30% growth reduction in the melanized ones. The results of this investigation, the first focused on the biological role of melanin in "black-fungi", are novel and encourage a better understanding of the biochemical features of melanin in the environmental adaptive ability of the new species Z. obscura.


Asunto(s)
Ascomicetos , Melaninas , Saccharomyces cerevisiae , Peróxido de Hidrógeno/farmacología , Antifúngicos/farmacología
20.
Pharmaceuticals (Basel) ; 15(4)2022 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-35455453

RESUMEN

As a follow-up to our previous studies on glycolipid surfactants, a new molecule, that is lactose 6'-O-undecylenate (URB1418), was investigated. To this end, a practical synthesis and studies aimed at exploring its specific properties were carried out. URB1418 showed antifungal activities against Trichophyton rubrum F2 and Candida albicans ATCC 10231 (MIC 512 µg/mL) and no significant antibacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa. At the same time, it presented anti-inflammatory properties, as documented by the dose-dependent reduction in LPS-induced NO release in RAW 264.7 cells, while a low antioxidant capacity in the range of concentrations tested (EC50 > 200 µM) was also observed. Moreover, URB1418 offers the advantage of being more stable than the reference polyunsaturated lactose esters and of being synthesized using a "green" procedure, involving an enzymatic method, high yield and low manufacturing cost. For all these reasons and the absence of toxicity (HaCaT cells), the new glycolipid presented herein could be considered an interesting compound for applications in various fields.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA