RESUMEN
The frequency of visual gamma oscillations is determined by both the neuronal excitation-inhibition balance and the time constants of GABAergic processes. The gamma peak frequency has been linked to sensory processing, cognitive function, cortical structure, and may have a genetic contribution. To disentangle the intricate relationship among these factors, accurate and reliable estimates of peak frequency are required. Here, a bootstrapping approach that provides estimates of peak frequency reliability, thereby increasing the robustness of the inferences made on this parameter was developed. The method using both simulated data and real data from two previous pharmacological MEG studies of visual gamma with alcohol and tiagabine was validated. In particular, the study by Muthukumaraswamy et al. [] (Neuropsychopharmacology 38(6):1105-1112), in which GABAergic enhancement by tiagabine had previously demonstrated a null effect on visual gamma oscillations, contrasting with strong evidence from both animal models and very recent human studies was re-evaluated. After improved peak frequency estimation and additional exclusion of unreliably measured data, it was found that the GABA reuptake inhibitor tiagabine did produce, as predicted, a marked decrease in visual gamma oscillation frequency. This result demonstrates the potential impact of objective approaches to data quality control, and provides additional translational evidence for the mechanisms of GABAergic transmission generating gamma oscillations in humans. Hum Brain Mapp 37:3882-3896, 2016. © 2016 Wiley Periodicals, Inc.
Asunto(s)
Encéfalo/efectos de los fármacos , Inhibidores de Recaptación de GABA/farmacología , Ritmo Gamma/efectos de los fármacos , Ácidos Nipecóticos/farmacología , Percepción Visual/efectos de los fármacos , Consumo de Bebidas Alcohólicas/metabolismo , Encéfalo/metabolismo , Depresores del Sistema Nervioso Central/farmacología , Simulación por Computador , Estudios Cruzados , Etanol/farmacología , Ritmo Gamma/fisiología , Humanos , Magnetoencefalografía , Modelos Neurológicos , Método Simple Ciego , Tiagabina , Percepción Visual/fisiología , Ácido gamma-AminobutíricoRESUMEN
Alcohol is a rich drug affecting both the γ-amino butyric acid (GABA) and glutamatergic neurotransmitter systems. Recent findings from both modeling and pharmacological manipulation have indicated a link between GABAergic activity and oscillations measured in the gamma frequency range (30-80 Hz), but there are no previous reports of alcohol's modulation of gamma-band activity measured by magnetoencephalography (MEG) or electroencephalography (EEG). In this single-blind, placebo-controlled crossover study, 16 participants completed two study days, on one day of which they consumed a dose of 0.8 g/kg alcohol, and on the other day a placebo. MEG recordings of brain activity were taken before and after beverage consumption, using visual grating and finger abduction paradigms known to induce gamma-band activity in the visual and motor cortices respectively. Time-frequency analyses of beamformer source reconstructions in the visual cortex showed that alcohol increased peak gamma amplitude and decreased peak frequency. For the motor task, alcohol increased gamma amplitude in the motor cortex. These data support the notion that gamma oscillations are dependent, in part, on the balance between excitation and inhibition. Disruption of this balance by alcohol, by increasing GABAergic inhibition at GABAA receptors and decreasing glutamatergic excitation at N-methyl-D-aspartic acid receptors, alters both the amplitude and frequency of gamma oscillations. The findings provide further insight into the neuropharmacological action of alcohol.