Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Nature ; 592(7856): 799-803, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33854232

RESUMEN

Mammalian development, adult tissue homeostasis and the avoidance of severe diseases including cancer require a properly orchestrated cell cycle, as well as error-free genome maintenance. The key cell-fate decision to replicate the genome is controlled by two major signalling pathways that act in parallel-the MYC pathway and the cyclin D-cyclin-dependent kinase (CDK)-retinoblastoma protein (RB) pathway1,2. Both MYC and the cyclin D-CDK-RB axis are commonly deregulated in cancer, and this is associated with increased genomic instability. The autophagic tumour-suppressor protein AMBRA1 has been linked to the control of cell proliferation, but the underlying molecular mechanisms remain poorly understood. Here we show that AMBRA1 is an upstream master regulator of the transition from G1 to S phase and thereby prevents replication stress. Using a combination of cell and molecular approaches and in vivo models, we reveal that AMBRA1 regulates the abundance of D-type cyclins by mediating their degradation. Furthermore, by controlling the transition from G1 to S phase, AMBRA1 helps to maintain genomic integrity during DNA replication, which counteracts developmental abnormalities and tumour growth. Finally, we identify the CHK1 kinase as a potential therapeutic target in AMBRA1-deficient tumours. These results advance our understanding of the control of replication-phase entry and genomic integrity, and identify the AMBRA1-cyclin D pathway as a crucial cell-cycle-regulatory mechanism that is deeply interconnected with genomic stability in embryonic development and tumorigenesis.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Ciclina D/metabolismo , Inestabilidad Genómica , Fase S , Animales , Línea Celular , Proliferación Celular , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/antagonistas & inhibidores , Quinasas Ciclina-Dependientes/metabolismo , Replicación del ADN , Regulación del Desarrollo de la Expresión Génica , Genes Supresores de Tumor , Humanos , Ratones , Ratones Noqueados , Mutaciones Letales Sintéticas
2.
Pharmacol Res ; 208: 107382, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39218420

RESUMEN

It is now recognized that tumors are not merely masses of transformed cells but are intricately interconnected with healthy cells in the tumor microenvironment (TME), forming complex and heterogeneous structures. Recent studies discovered that cancer cells can steal mitochondria from healthy cells to empower themselves, while reducing the functions of their target organ. Mitochondrial transfer, i.e. the intercellular movement of mitochondria, is recently emerging as a novel process in cancer biology, contributing to tumor growth, metastasis, and resistance to therapy by shaping the metabolic landscape of the tumor microenvironment. This review highlights the influence of transferred mitochondria on cancer bioenergetics, redox balance and apoptotic resistance, which collectively foster aggressive cancer phenotype. Furthermore, the therapeutic implications of mitochondrial transfer are discussed, emphasizing the potential of targeting these pathways to overcome drug resistance and improve treatment efficacy.


Asunto(s)
Mitocondrias , Neoplasias , Microambiente Tumoral , Humanos , Neoplasias/metabolismo , Neoplasias/patología , Neoplasias/terapia , Neoplasias/tratamiento farmacológico , Mitocondrias/metabolismo , Animales , Metabolismo Energético , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Resistencia a Antineoplásicos
3.
Acta Neuropathol ; 142(3): 537-564, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34302498

RESUMEN

Medulloblastoma (MB) is a childhood malignant brain tumour comprising four main subgroups characterized by different genetic alterations and rate of mortality. Among MB subgroups, patients with enhanced levels of the c-MYC oncogene (MBGroup3) have the poorest prognosis. Here we identify a previously unrecognized role of the pro-autophagy factor AMBRA1 in regulating MB. We demonstrate that AMBRA1 expression depends on c-MYC levels and correlates with Group 3 patient poor prognosis; also, knockdown of AMBRA1 reduces MB stem potential, growth and migration of MBGroup3 stem cells. At a molecular level, AMBRA1 mediates these effects by suppressing SOCS3, an inhibitor of STAT3 activation. Importantly, pharmacological inhibition of autophagy profoundly affects both stem and invasion potential of MBGroup3 stem cells, and a combined anti-autophagy and anti-STAT3 approach impacts the MBGroup3 outcome. Taken together, our data support the c-MYC/AMBRA1/STAT3 axis as a strong oncogenic signalling pathway with significance for both patient stratification strategies and targeted treatments of MBGroup3.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Autofagia/efectos de los fármacos , Neoplasias Cerebelosas/tratamiento farmacológico , Meduloblastoma/tratamiento farmacológico , Factor de Transcripción STAT3/genética , Transducción de Señal/efectos de los fármacos , Animales , Línea Celular Tumoral , Movimiento Celular/genética , Niño , Técnicas de Silenciamiento del Gen , Humanos , Ratones , Ratones Endogámicos C57BL , Células Madre Neoplásicas , Pronóstico , Proteínas Proto-Oncogénicas c-myc/biosíntesis , Proteínas Proto-Oncogénicas c-myc/genética , Proteína 3 Supresora de la Señalización de Citocinas/antagonistas & inhibidores
4.
Proc Natl Acad Sci U S A ; 115(15): E3388-E3397, 2018 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-29581312

RESUMEN

S-nitrosylation, a prototypic redox-based posttranslational modification, is frequently dysregulated in disease. S-nitrosoglutathione reductase (GSNOR) regulates protein S-nitrosylation by functioning as a protein denitrosylase. Deficiency of GSNOR results in tumorigenesis and disrupts cellular homeostasis broadly, including metabolic, cardiovascular, and immune function. Here, we demonstrate that GSNOR expression decreases in primary cells undergoing senescence, as well as in mice and humans during their life span. In stark contrast, exceptionally long-lived individuals maintain GSNOR levels. We also show that GSNOR deficiency promotes mitochondrial nitrosative stress, including excessive S-nitrosylation of Drp1 and Parkin, thereby impairing mitochondrial dynamics and mitophagy. Our findings implicate GSNOR in mammalian longevity, suggest a molecular link between protein S-nitrosylation and mitochondria quality control in aging, and provide a redox-based perspective on aging with direct therapeutic implications.


Asunto(s)
Envejecimiento/metabolismo , Mamíferos/metabolismo , Mitocondrias/metabolismo , Dinámicas Mitocondriales , Mitofagia , Envejecimiento/genética , Aldehído Oxidorreductasas/genética , Aldehído Oxidorreductasas/metabolismo , Animales , Senescencia Celular , Humanos , Mamíferos/genética , Ratones , Ratones Endogámicos C57BL , Mitocondrias/genética , Óxido Nítrico/metabolismo , Estrés Nitrosativo , Procesamiento Proteico-Postraduccional , S-Nitrosotioles/metabolismo
5.
EMBO J ; 35(16): 1793-809, 2016 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-27390127

RESUMEN

Mitochondrial dynamics and functionality are linked to the autophagic degradative pathway under several stress conditions. However, the interplay between mitochondria and autophagy upon cell death signalling remains unclear. The T-cell receptor pathway signals the so-called activation-induced cell death (AICD) essential for immune tolerance regulation. Here, we show that this apoptotic pathway requires the inhibition of macroautophagy. Protein kinase-A activation downstream of T-cell receptor signalling inhibits macroautophagy upon AICD induction. This leads to the accumulation of damaged mitochondria, which are fragmented, display remodelled cristae and release cytochrome c, thereby driving apoptosis. Autophagy-forced reactivation that clears the Parkin-decorated mitochondria is as effective in inhibiting apoptosis as genetic interference with cristae remodelling and cytochrome c release. Thus, upon AICD induction regulation of macroautophagy, rather than selective mitophagy, ensures apoptotic progression.


Asunto(s)
Apoptosis , Autofagia , Mitocondrias/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo , Linfocitos T/fisiología , Animales , Células Cultivadas , Citocromos c/metabolismo , Humanos , Ratones Endogámicos C57BL , Mitocondrias/enzimología , Mitocondrias/ultraestructura , Transducción de Señal
6.
Pharmacol Res ; 146: 104317, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31220561

RESUMEN

Mitochondria are dynamic organelles whose processes of fusion and fission are tightly regulated by specialized proteins, known as mitochondria-shaping proteins. Among them, Drp1 is the main pro-fission protein and its activity is tightly regulated to ensure a strict control over mitochondria shape according to the cell needs. In the recent years, mitochondrial dynamics emerged as a new player in the regulation of fundamental processes during T cell life. Indeed, the morphology of mitochondria directly regulates T cell differentiation, this by affecting the engagment of alternative metabolic routes upon activation. Further, Drp1-dependent mitochondrial fission sustains both T cell clonal expansion and T cell migration and invasivness. By this review, we aim at discussing the most recent findings about the roles played by the Drp1-dependent mitochondrial fission in T cells, and at highlighting how its pharmacological modulation could open the way to future therapeutic approaches to modulate T cell response.


Asunto(s)
Dinaminas/inmunología , Inmunomodulación/inmunología , Mitocondrias/inmunología , Dinámicas Mitocondriales/inmunología , Animales , Diferenciación Celular/inmunología , Movimiento Celular/inmunología , Humanos , Proteínas Asociadas a Microtúbulos/inmunología , Linfocitos T/inmunología
7.
Semin Cancer Biol ; 47: 29-42, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28655520

RESUMEN

Mitochondria-shaping proteins control the dynamic equilibrium between fusion and fission of the mitochondrial network. Their balance is strictly required to regulate various processes, including the quality of mitochondria, cell metabolism, cell death, proliferation and cell migration. Alterations in these processes are frequently encountered in cancer, during both its onset and later progression, as evidence emerge connecting alterations in mitochondrial dynamics with cancer development. In recent years, novel therapeutic approaches to fight against different human tumors aim at exploiting the immune system's ability to specifically recognize tumor antigens, thus killing malignant cells in a process named immune-surveillance. Interestingly, data are accumulating on the role that mitochondrial dynamics play also for the correct function of both the innate and the adaptive immune system. By this review, we overview how mitochondrial dynamics can affect various processes during cancer development, acting directly on tumor cells or indirectly on cells responsible for tumor aggression and defence.


Asunto(s)
Vigilancia Inmunológica , Mitocondrias/metabolismo , Dinámicas Mitocondriales , Neoplasias/etiología , Neoplasias/metabolismo , Animales , Apoptosis , Metabolismo Energético , Humanos , Sistema Inmunológico/citología , Sistema Inmunológico/inmunología , Sistema Inmunológico/metabolismo , Mitocondrias/efectos de los fármacos , Terapia Molecular Dirigida , Neoplasias/tratamiento farmacológico , Especies Reactivas de Oxígeno/metabolismo
8.
Biochim Biophys Acta ; 1837(4): 451-60, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24275087

RESUMEN

Mitochondria are double-membraned highly dynamic organelles; the shape, location and function of which are determined by a constant balance between opposing fusion and fission events. A fine modulation of mitochondrial structure is crucial for their correct functionality and for many physiological cell processes, the status of these organelles, being thus a key aspect in a cell's fate. Indeed, the homeostasis of mitochondria needs to be highly regulated for the above mentioned reasons, and since a) they are the major source of energy; b) they participate in various signaling pathways; albeit at the same time c) they are also the major source of reactive oxygen species (ROS, the main damaging detrimental players for all cell components). Elaborate mechanisms of mitochondrial quality control have evolved for maintaining a functional mitochondrial network and avoiding cell damage. The first mechanism is the removal of damaged mitochondrial proteins within the organelle via chaperones and protease; the second is the cytosolic ubiquitin-proteasome system (UPS), able to eliminate proteins embedded in the outer mitochondrial membrane; the third is the removal of the entire mitochondria through mitophagy, in the case of extensive organelle damage and dysfunction. In this review, we provide an overview of these mitochondria stability and quality control mechanisms, highlighting mitophagy, and emphasizing the central role of mitochondrial dynamics in this context. This article is part of a Special Issue entitled: Dynamic and ultrastructure of bioenergetic membranes and their components.


Asunto(s)
Dinámicas Mitocondriales/fisiología , Proteínas Mitocondriales/metabolismo , Mitofagia/fisiología , Transducción de Señal , Animales , Autofagia , Humanos , Modelos Biológicos , Proteolisis , Especies Reactivas de Oxígeno/metabolismo
9.
EMBO J ; 30(7): 1195-208, 2011 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-21358617

RESUMEN

BECLIN 1 is a central player in macroautophagy. AMBRA1, a BECLIN 1-interacting protein, positively regulates the BECLIN 1-dependent programme of autophagy. In this study, we show that AMBRA1 binds preferentially the mitochondrial pool of the antiapoptotic factor BCL-2, and that this interaction is disrupted following autophagy induction. Further, AMBRA1 can compete with both mitochondrial and endoplasmic reticulum-resident BCL-2 (mito-BCL-2 and ER-BCL-2, respectively) to bind BECLIN 1. Moreover, after autophagy induction, AMBRA1 is recruited to BECLIN 1. Altogether, these results indicate that, in normal conditions, a pool of AMBRA1 binds preferentially mito-BCL-2; after autophagy induction, AMBRA1 is released from BCL-2, consistent with its ability to promote BECLIN 1 activity. In addition, we found that the binding between AMBRA1 and mito-BCL-2 is reduced during apoptosis. Thus, a dynamic interaction exists between AMBRA1 and BCL-2 at the mitochondria that could regulate both BECLIN 1-dependent autophagy and apoptosis.


Asunto(s)
Autofagia , Proteínas Portadoras/biosíntesis , Regulación de la Expresión Génica , Mapeo de Interacción de Proteínas , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Proteínas Reguladoras de la Apoptosis/metabolismo , Beclina-1 , Línea Celular , Retículo Endoplásmico/metabolismo , Humanos , Proteínas de la Membrana/metabolismo , Membranas Mitocondriales/metabolismo
10.
Cell Mol Life Sci ; 71(12): 2313-24, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24442478

RESUMEN

Mitochondria are highly dynamic and functionally versatile organelles that continuously fragment and fuse in response to different physiological needs of the cell. The list of proteins that strictly regulate the morphology of these organelles is constantly growing, adding new players every day and new pieces to the comprehension and elucidation of this complex machinery. The structural complexity of mitochondria is only paralled by their functional versatility. Indeed, changes in mitochondria shape play critical roles in vertebrate development programmed cell death and in various processes of normal cell physiology, such as calcium signaling, reactive oxygen species production, and lifespan. Here, we present the latest findings on the regulation of mitochondrial dynamics and some of their physiological roles, focusing on cell migration. In cells where migration represents a crucial function in their physiology, such as T and tumoral metastatic cells, mitochondria need to be fragmented and recruited to specific subcellular regions to make movement possible. In depth analysis of this role of mitochondrial dynamics should help in identifying potential targeted therapy against cancer or in improving the immune system's efficiency.


Asunto(s)
Movimiento Celular , Dinámicas Mitocondriales/fisiología , Forma de los Orgánulos , Animales , Transporte Biológico , Humanos , Mitocondrias/fisiología
11.
EMBO J ; 29(23): 4035-47, 2010 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-20953162

RESUMEN

During T-cell migration, cell polarity is orchestrated by chemokine receptors and adhesion molecules and involves the functional redistribution of molecules and organelles towards specific cell compartments. In contrast, it is generally believed that the cell polarity established when T cells meet antigen-presenting cells (APCs) is controlled by the triggered T-cell receptor (TCR). Here, we show that, during activation of human T lymphocytes by APCs, chemokines and LFA-1 establish cell polarity independently of TCR triggering. Chemokine-induced LFA-1 activation results in fast recruitment of MTOC and mitochondria towards the potential APC, a process required to amplify TCR Ca(2+) signalling at the upcoming immunological synapse, to promote nuclear translocation of transcriptional factor NFATc2 and boost CD25 expression. Our data show that the initial adhesive signals delivered by chemokines and LFA-1 shape and prepare T cells for antigen recognition.


Asunto(s)
Sinapsis Inmunológicas/inmunología , Activación de Linfocitos , Antígeno-1 Asociado a Función de Linfocito/inmunología , Mitocondrias/inmunología , Receptores de Antígenos de Linfocitos T/inmunología , Linfocitos T/inmunología , Células Presentadoras de Antígenos/inmunología , Canales de Calcio/inmunología , Moléculas de Adhesión Celular/inmunología , Polaridad Celular , Células Cultivadas , Quimiocinas/inmunología , Humanos , Células Jurkat , Transducción de Señal , Linfocitos T/citología
12.
Front Immunol ; 15: 1451003, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39267748

RESUMEN

The health tissue surrounding a solid tumor, namely the tumor microenvironment (TME), is an extremely complex universe of cells, extracellular matrix, and signals of various nature, that support and protect the growth of cancer cells. The interactions taking place between cancer cells and the TME are crucial not only for tumor growth, invasion, and metastasis but they also play a key role in modulating immune system responses to cancer, and vice-versa. Indeed, tumor-infiltrating immune cells (e.g., T lymphocytes and natural killers) activity is greatly affected by signals (mostly ligands/receptors and paracrine) they receive in the TME, which frequently generate an immunosuppressive milieu. In the last years, it has become evident that soluble and receptor signaling is not the only way of communication between cells in the TME, with extracellular vesicles, such as exosomes, playing a central role. Among the different new kind of vesicles recently discovered, migrasomes look like to be of extreme interest as they are not only different from the others, but also have been reported as able to deliver a very heterogeneous kind of messages, able to profoundly affect recipient cells' behavior. Indeed, the role played by the different classes of extracellular vesicles, especially in the TME, relies on their not-directional diffusion from the originating cells, while migrasomes released from migrating cells do have a directional effect. Migrasomes biology and their involvement in cancer progression, dissemination, and resistance to therapy is still a largely obscure field, but with promising development foreseen in the next future.


Asunto(s)
Vesículas Extracelulares , Neoplasias , Microambiente Tumoral , Humanos , Microambiente Tumoral/inmunología , Vesículas Extracelulares/inmunología , Neoplasias/inmunología , Neoplasias/patología , Animales , Comunicación Celular/inmunología , Exosomas/inmunología , Transducción de Señal , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo
13.
JCI Insight ; 9(15)2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38954474

RESUMEN

Besides suppressing immune responses, regulatory T cells (Tregs) maintain tissue homeostasis and control systemic metabolism. Whether iron is involved in Treg-mediated tolerance is completely unknown. Here, we showed that the transferrin receptor CD71 was upregulated on activated Tregs infiltrating human liver cancer. Mice with a Treg-restricted CD71 deficiency spontaneously developed a scurfy-like disease, caused by impaired perinatal Treg expansion. CD71-null Tregs displayed decreased proliferation and tissue-Treg signature loss. In perinatal life, CD71 deficiency in Tregs triggered hepatic iron overload response, characterized by increased hepcidin transcription and iron accumulation in macrophages. Lower bacterial diversity, and reduction of beneficial species, were detected in the fecal microbiota of CD71 conditional knockout neonates. Our findings indicate that CD71-mediated iron absorption is required for Treg perinatal expansion and is related to systemic iron homeostasis and bacterial gut colonization. Therefore, we hypothesize that Tregs establish nutritional tolerance through competition for iron during bacterial colonization after birth.


Asunto(s)
Antígenos CD , Hierro , Receptores de Transferrina , Linfocitos T Reguladores , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Receptores de Transferrina/metabolismo , Animales , Hierro/metabolismo , Ratones , Humanos , Antígenos CD/metabolismo , Neoplasias Hepáticas/inmunología , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Ratones Noqueados , Femenino , Microbioma Gastrointestinal/inmunología , Masculino , Hígado/metabolismo , Hígado/inmunología , Homeostasis
14.
Exp Cell Res ; 318(11): 1309-15, 2012 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-22342457

RESUMEN

The decision between death and survival is a difficult phase of a cell life. It may depend on the intensity of a stress stimulus, on the presence of invasive pathogens, or on specific signals from neighbouring cells. Death-related molecules are being shown to possess different, and sometimes opposite roles, which they play also according to a number of environmental clues. In this review, we will analyse some of these molecules and their roles, with particular regard to mitochondria-related factors, such as BCL2 family members, the apoptosome components, the autophagy/death cross-talkers and molecules regulating mitochondrial structure and functions. Turning the double-edged swords of death molecules into plougshares may turn out to be strategically crucial in molecular oncology.


Asunto(s)
Supervivencia Celular , Mitocondrias/fisiología , Proteínas Mitocondriales/fisiología , Humanos
15.
J Exp Med ; 203(13): 2879-86, 2006 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-17145957

RESUMEN

Lymphocyte traffic is required to maintain homeostasis and perform appropriate immunological reactions. To migrate into inflamed tissues, lymphocytes must acquire spatial and functional asymmetries. Mitochondria are highly dynamic organelles that distribute in the cytoplasm to meet specific cellular needs, but whether this is essential to lymphocyte functions is unknown. We show that mitochondria specifically concentrate at the uropod during lymphocyte migration by a process involving rearrangements of their shape. Mitochondrial fission facilitates relocation of the organelles and promotes lymphocyte chemotaxis, whereas mitochondrial fusion inhibits both processes. Our data substantiate a new role for mitochondrial dynamics and suggest that mitochondria redistribution is required to regulate the motor of migrating cells.


Asunto(s)
Quimiotaxis de Leucocito/fisiología , Linfocitos/fisiología , Mitocondrias/fisiología , Adenosina Trifosfato/metabolismo , Androstadienos/farmacología , Factores Quimiotácticos/farmacología , Quimiotaxis de Leucocito/efectos de los fármacos , Dinaminas , GTP Fosfohidrolasas/genética , Células HL-60 , Humanos , Células Jurkat , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Linfocitos/efectos de los fármacos , Linfocitos/metabolismo , Fusión de Membrana/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Proteínas de Transporte de Membrana/genética , Microscopía Confocal , Proteínas Asociadas a Microtúbulos/genética , Microtúbulos/efectos de los fármacos , Microtúbulos/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial , Proteínas Mitocondriales/genética , Cadenas Ligeras de Miosina/metabolismo , Nocodazol/farmacología , Oligomicinas/farmacología , Forma de los Orgánulos/efectos de los fármacos , Toxina del Pertussis/farmacología , Fosforilación/efectos de los fármacos , Pironas/farmacología , Transfección , Wortmanina
16.
EMBO Rep ; 11(9): 678-84, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20725092

RESUMEN

Mitochondria are highly dynamic organelles, the location, size and distribution of which are controlled by a family of proteins that modulate mitochondrial fusion and fission. Recent evidence indicates that mitochondrial morphology is crucial for cell physiology, as changes in mitochondrial shape have been linked to neurodegeneration, calcium signalling, lifespan and cell death. Because immune cells contain few mitochondria, these organelles have been considered to have only a marginal role in this physiological context-which is conversely well characterized from the point of view of signalling. Nevertheless, accumulating evidence shows that mitochondrial dynamics have an impact on the migration and activation of immune cells and on the innate immune response. Here, we discuss the roles of mitochondrial dynamics in cell pathophysiology and consider how studying dynamics in the context of the immune system could increase our knowledge about the role of dynamics in key signalling cascades.


Asunto(s)
Fenómenos Fisiológicos Celulares , Mitocondrias , Transducción de Señal/fisiología , Animales , Sistema Inmunológico/fisiología , Fusión de Membrana/fisiología , Mitocondrias/fisiología , Mitocondrias/ultraestructura , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo
17.
Biol Direct ; 17(1): 8, 2022 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-35484629

RESUMEN

Migrasomes, released by migrating cells, belong to the heterogeneous world of extracellular vesicles (EVs). However, they can be distinguished from all other members of EVs by their size, biorigin and protein cargo. As far as we know, they can play important roles in various communication processes, by mediating the release of signals, such as mRNAs, proteins or damaged mitochondria. To extend and better understand the functional roles and importance of migrasomes, it is first essential to well understand the basic molecular mechanisms behind their formation and function. Herein, we endeavor to provide a brief and up-to-date description of migrasome biogenesis, release, characterization, biological properties and functional activities in cell-to-cell communication, and we will discuss and propose putative new functions for these vesicles.


Asunto(s)
Vesículas Extracelulares , Vesículas Extracelulares/metabolismo , Orgánulos , Proteínas/metabolismo
18.
Mol Oncol ; 16(1): 188-205, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34535949

RESUMEN

Programmed cell death-1 (PD-1) signaling downregulates the T-cell response, promoting an exhausted state in tumor-infiltrating T cells, through mostly unveiled molecular mechanisms. Dynamin-related protein-1 (Drp1)-dependent mitochondrial fission plays a crucial role in sustaining T-cell motility, proliferation, survival, and glycolytic engagement. Interestingly, such processes are exactly those inhibited by PD-1 in tumor-infiltrating T cells. Here, we show that PD-1pos CD8+ T cells infiltrating an MC38 (murine adenocarcinoma)-derived murine tumor mass have a downregulated Drp1 activity and more elongated mitochondria compared with PD-1neg counterparts. Also, PD-1pos lymphocytic elements infiltrating a human colon cancer rarely express active Drp1. Mechanistically, PD-1 signaling directly prevents mitochondrial fragmentation following T-cell stimulation by downregulating Drp1 phosphorylation on Ser616, via regulation of the ERK1/2 and mTOR pathways. In addition, downregulation of Drp1 activity in tumor-infiltrating PD-1pos CD8+ T cells seems to be a mechanism exploited by PD-1 signaling to reduce motility and proliferation of these cells. Overall, our data indicate that the modulation of Drp1 activity in tumor-infiltrating T cells may become a valuable target to ameliorate the anticancer immune response in future immunotherapy approaches.


Asunto(s)
Linfocitos T CD8-positivos , Dinaminas/inmunología , Receptor de Muerte Celular Programada 1/inmunología , Animales , Linfocitos T CD8-positivos/metabolismo , Dinaminas/metabolismo , Humanos , Ratones , Mitocondrias/metabolismo , Dinámicas Mitocondriales , Receptor de Muerte Celular Programada 1/metabolismo
19.
Oncogene ; 41(13): 1986-2002, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35236967

RESUMEN

Inhibitors of the mitotic kinase PLK1 yield objective responses in a subset of refractory cancers. However, PLK1 overexpression in cancer does not correlate with drug sensitivity, and the clinical development of PLK1 inhibitors has been hampered by the lack of patient selection marker. Using a high-throughput chemical screen, we discovered that cells deficient for the tumor suppressor ARID1A are highly sensitive to PLK1 inhibition. Interestingly this sensitivity was unrelated to canonical functions of PLK1 in mediating G2/M cell cycle transition. Instead, a whole-genome CRISPR screen revealed PLK1 inhibitor sensitivity in ARID1A deficient cells to be dependent on the mitochondrial translation machinery. We find that ARID1A knock-out (KO) cells have an unusual mitochondrial phenotype with aberrant biogenesis, increased oxygen consumption/expression of oxidative phosphorylation genes, but without increased ATP production. Using expansion microscopy and biochemical fractionation, we see that a subset of PLK1 localizes to the mitochondria in interphase cells. Inhibition of PLK1 in ARID1A KO cells further uncouples oxygen consumption from ATP production, with subsequent membrane depolarization and apoptosis. Knockdown of specific subunits of the mitochondrial ribosome reverses PLK1-inhibitor induced apoptosis in ARID1A deficient cells, confirming specificity of the phenotype. Together, these findings highlight a novel interphase role for PLK1 in maintaining mitochondrial fitness under metabolic stress, and a strategy for therapeutic use of PLK1 inhibitors. To translate these findings, we describe a quantitative microscopy assay for assessment of ARID1A protein loss, which could offer a novel patient selection strategy for the clinical development of PLK1 inhibitors in cancer.


Asunto(s)
Proteínas de Ciclo Celular , Proteínas de Unión al ADN , Neoplasias , Proteínas Serina-Treonina Quinasas , Proteínas Proto-Oncogénicas , Factores de Transcripción , Adenosina Trifosfato/metabolismo , Apoptosis , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Consumo de Oxígeno , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Quinasa Tipo Polo 1
20.
Methods Mol Biol ; 2310: 287-299, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34096009

RESUMEN

The dynamism of mitochondria, considered as complex and motile organelles, is brought about by mitochondria ability to undergo cycles of fission and fusion events, whose fine balance determines their morphology in a specific physiological context. A huge body of evidence makes it possible to associate mitochondrial organization to regulation of an increasing number of key cellular processes, such as biosynthetic pathways, oxidative phosphorylation and ATP production, calcium buffering, mtDNA homeostasis, autophagy, and cell death. Here, we review the recently developed imaging methods for studying mitochondrial dynamics, including live-cell imaging, by using mitochondrial-targeted fluorescent proteins. In more details, we focus our attention on two different protocols in the T cell model, an example of nonadherent cells, which present some particularities and difficulties in the analysis of mitochondrial shape. Also, we discuss some examples of mouse models carrying mitochondria-targeted fluorescent proteins, which allow to investigate the mitochondrial morphology in vivo.


Asunto(s)
Microscopía Confocal , Microscopía Fluorescente , Mitocondrias/metabolismo , Dinámicas Mitocondriales , Linfocitos T/metabolismo , Animales , Fraccionamiento Celular , Colorantes Fluorescentes/metabolismo , Humanos , Células Jurkat , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Ratones Transgénicos , Microscopía por Video , Mitocondrias/genética , Mitocondrias/inmunología , Linfocitos T/inmunología , Factores de Tiempo , Imagen de Lapso de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA