Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38780110

RESUMEN

In environmental risk assessment either for registration purposes or for retrospective assessments of monitoring data, the hazard assessment is predominantly based on effect data from ecotoxicity studies. Most regulatory frameworks require studies used for risk assessment to be evaluated for reliability and relevance. Historically, the Klimisch methodology was used in many regulatory procedures where reliability needed to be evaluated. More recently, the Criteria for Reporting and Evaluating Ecotoxicity Data (CRED) have been developed for aquatic ecotoxicity studies, providing more detailed guidance on the evaluation and reporting of not only the reliability but also the relevance of a scientific study. Here, we discuss the application of the CRED methodology for assessing sediment and soil ecotoxicity studies, addressing important sediment- and soil-specific criteria that should be included as part of the CRED evaluation system. We also provide detailed recommendations for the design and reporting of sediment and soil toxicity studies that can be used by scientists and researchers wishing to contribute ecotoxicological data for effect assessments carried out within regulatory frameworks. Integr Environ Assess Manag 2024;00:1-13. © 2024 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).

2.
Environ Sci Pollut Res Int ; 27(6): 6680-6689, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31863366

RESUMEN

Surface sediments can accumulate contaminants that affect microorganisms and invertebrates and disturb benthic ecological functions. However, effects of contaminants on ecological functions supported by sediment communities are understudied. Here, we tested the relevance of two simple tools to assess the ecotoxicological effects of metal contamination on natural sediment communities using particulate organic matter breakdown and decomposition as a functional descriptor. To this aim, we performed a 21-day laboratory microcosm experiment to assess the individual and combined effects of Cu and As (nominal concentration of 40 mg kg-1 dw each) using the bait-lamina method (cellulose, bran flakes, and active coal in PVC strips) as well as artificial tablets (cellulose, bran flakes and active coal embedded in an agar matrix). Sediment toxicity was also evaluated using the standardized ostracod toxicity test. Both the bait-lamina and artificial tablet methods showed low effects of As on organic matter breakdown and decomposition but strong effects of Cu on this important ecological function. Both also showed that the presence of Cu and As in mixture in the sediment induced total inhibition of organic matter breakdown and decomposition. The ostracod toxicity test also showed high toxicity of Cu-spiked and Cu-plus-As-spiked sediments and low toxicity of As-spiked sediments. Besides confirming that artificial organic matter substrates are relevant and useful for assessing the functional effects of contaminants on sediment micro- and macro-organism communities, these results suggest that the proposed methods offer promising perspectives for developing tools for use in assessing functional ecotoxicology in the sediment compartment.


Asunto(s)
Monitoreo del Ambiente/métodos , Sedimentos Geológicos , Invertebrados , Contaminantes Químicos del Agua , Animales , Ecotoxicología , Pruebas de Toxicidad
3.
Environ Toxicol Chem ; 37(8): 2246-2256, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29786148

RESUMEN

To protect house facades from fouling by microorganisms, biocides can be added to a render or paint before it is applied. During driving rain events, these biocides gradually leach out and have the potential to pollute soil or aquatic ecosystems. We studied the leaching behavior of biocides and toxicity of leachates from renders with either free or encapsulated biocides. Both render types contained equal amounts of terbutryn, 2-octyl-3(2H)-isothiazolinone (OIT), and 4,5-dichloro-2-n-octyl-4-isothiazolino-3-one (DCOIT). Nine leachate samples were generated over 9 immersion cycles according to a European standard, and biocides were quantified. The first and ninth leachate samples were tested using bioassays with algae, bacteria, and water fleas, the first sample was also tested with earthworms and springtails. Encapsulation reduced leaching of terbutryn, OIT, and DCOIT by 4-, 17-, and 27-fold. For aquatic organisms, the toxicity of water from render containing encapsulated biocides was always lower than that of render with free biocides. Furthermore, toxicity decreased by 4- to 5-fold over the 9 immersion cycles. Inhibition of photosynthesis was the most sensitive endpoint, followed by algal growth rate, bacterial bioluminescence, and water flea reproduction. Toxicity to algae was due to terbutryn and toxicity to bacteria was due to OIT. None of the samples affected soil organisms. Results demonstrate that combining standardized leaching tests with standardized bioassays is a promising approach to evaluate the ecotoxicity of biocides that leach from facade renders. Environ Toxicol Chem 2018;37:2246-2256. © 2018 SETAC.


Asunto(s)
Desinfectantes/análisis , Ecotoxicología , Contaminantes Químicos del Agua/análisis , Bacterias/efectos de los fármacos , Bioensayo , Diurona/análisis , Suelo , Tiazoles/análisis , Tiazoles/toxicidad , Pruebas de Toxicidad , Triazinas/análisis , Triazinas/toxicidad , Agua , Contaminantes Químicos del Agua/toxicidad
4.
Environ Sci Eur ; 28(1): 20, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27752453

RESUMEN

This report provides a brief review of the 20th annual meeting of the German Language Branch of the Society of Environmental Toxicology and Chemistry (SETAC GLB) held from September 7th to 10th 2015 at ETH (Swiss Technical University) in Zurich, Switzerland. The event was chaired by Inge Werner, Director of the Swiss Centre for Applied Ecotoxicology (Ecotox Centre) Eawag-EPFL, and organized by a team from Ecotox Centre, Eawag, Federal Office of the Environment, Federal Office of Agriculture, and Mesocosm GmbH (Germany). Over 200 delegates from academia, public agencies and private industry of Germany, Switzerland and Austria attended and discussed the current state of science and its application presented in 75 talks and 83 posters. In addition, three invited keynote speakers provided new insights into scientific knowledge 'brokering', and-as it was the International Year of Soil-the important role of healthy soil ecosystems. Awards were presented to young scientists for best oral and poster presentations, and for best 2014 master and doctoral theses. Program and abstracts of the meeting (mostly in German) are provided as Additional file 1.

5.
Ecotoxicol Environ Saf ; 67(2): 180-9, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17350685

RESUMEN

Multigeneration tests are very useful for the assessment of long term toxicity of pollutants such as endocrine disruptor compounds. In this study, multigeneration reproduction tests adapted from the ISO standard 11267 were conducted with the Collembola Folsomia candida. Springtails were exposed to artificial soil contaminated with four insect growth regulators (methoprene, fenoxycarb, teflubenzuron, and precocene II) according to two different experimental set-ups. In the first set-up, the parental generation (F(0)) of Collembola was exposed to a pollutant for 28 days. Juveniles from the F(1) generation were transferred to uncontaminated soil for another 28-day period to generate the F(2) generation. In the second set-up, the F(0) generation was exposed to a pollutant for 10 days before being transferred to uncontaminated soil to reproduce. After 18-28 days, juveniles from the F(1) were transferred to clean soil to generate the F(2) generation. An effect on the number of hatched juveniles of the F(2) generation was observed for methoprene after exposure of the F(0) for 28 days and hatching of F(1) in contaminated soil. For methoprene and teflubenzuron, significant effects were even observed on the F(2) generation with the second experimental set-up, when only the F(0) generation was exposed for 10 days. This shows that the impact of these substances is transgenerational, which can have important consequences for the population of these or other organisms. No effect on the F(2) generation was observed with fenoxycarb and precocene II with the 10-day exposure experiment. Our results show that the developed experimental procedures are appropriate to assess the long term effects of endocrine disrupting compounds on the reproduction of the non-target species F. candida. Another important finding is that two substances with the same predicted mode of action (i.e., the two juvenile hormone analogues fenoxycarb and methoprene) do not necessarily affect the same endpoints in F. candida.


Asunto(s)
Artrópodos/efectos de los fármacos , Disruptores Endocrinos/toxicidad , Hormonas Juveniles/toxicidad , Reproducción/efectos de los fármacos , Contaminantes del Suelo/toxicidad , Pruebas de Toxicidad/métodos , Animales , Artrópodos/crecimiento & desarrollo , Relación Dosis-Respuesta a Droga
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA