Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 186(6): 1162-1178.e20, 2023 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-36931244

RESUMEN

Germline histone H3.3 amino acid substitutions, including H3.3G34R/V, cause severe neurodevelopmental syndromes. To understand how these mutations impact brain development, we generated H3.3G34R/V/W knock-in mice and identified strikingly distinct developmental defects for each mutation. H3.3G34R-mutants exhibited progressive microcephaly and neurodegeneration, with abnormal accumulation of disease-associated microglia and concurrent neuronal depletion. G34R severely decreased H3K36me2 on the mutant H3.3 tail, impairing recruitment of DNA methyltransferase DNMT3A and its redistribution on chromatin. These changes were concurrent with sustained expression of complement and other innate immune genes possibly through loss of non-CG (CH) methylation and silencing of neuronal gene promoters through aberrant CG methylation. Complement expression in G34R brains may lead to neuroinflammation possibly accounting for progressive neurodegeneration. Our study reveals that H3.3G34-substitutions have differential impact on the epigenome, which underlie the diverse phenotypes observed, and uncovers potential roles for H3K36me2 and DNMT3A-dependent CH-methylation in modulating synaptic pruning and neuroinflammation in post-natal brains.


Asunto(s)
ADN Metiltransferasa 3A , Histonas , Animales , Ratones , ADN (Citosina-5-)-Metiltransferasas/genética , Metilación de ADN/genética , Metilasas de Modificación del ADN/genética , Histonas/metabolismo , Enfermedades Neuroinflamatorias
2.
Cell ; 186(22): 4898-4919.e25, 2023 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-37827155

RESUMEN

Expansions of repeat DNA tracts cause >70 diseases, and ongoing expansions in brains exacerbate disease. During expansion mutations, single-stranded DNAs (ssDNAs) form slipped-DNAs. We find the ssDNA-binding complexes canonical replication protein A (RPA1, RPA2, and RPA3) and Alternative-RPA (RPA1, RPA3, and primate-specific RPA4) are upregulated in Huntington disease and spinocerebellar ataxia type 1 (SCA1) patient brains. Protein interactomes of RPA and Alt-RPA reveal unique and shared partners, including modifiers of CAG instability and disease presentation. RPA enhances in vitro melting, FAN1 excision, and repair of slipped-CAGs and protects against CAG expansions in human cells. RPA overexpression in SCA1 mouse brains ablates expansions, coincident with decreased ATXN1 aggregation, reduced brain DNA damage, improved neuron morphology, and rescued motor phenotypes. In contrast, Alt-RPA inhibits melting, FAN1 excision, and repair of slipped-CAGs and promotes CAG expansions. These findings suggest a functional interplay between the two RPAs where Alt-RPA may antagonistically offset RPA's suppression of disease-associated repeat expansions, which may extend to other DNA processes.


Asunto(s)
Proteína de Replicación A , Expansión de Repetición de Trinucleótido , Animales , Humanos , Ratones , ADN/genética , Reparación de la Incompatibilidad de ADN , Enfermedad de Huntington/genética , Proteínas/genética , Ataxias Espinocerebelosas/genética , Proteína de Replicación A/metabolismo
3.
Mol Cell ; 81(12): 2549-2565.e8, 2021 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-33957083

RESUMEN

Hsp70s comprise a deeply conserved chaperone family that has a central role in maintaining protein homeostasis. In humans, Hsp70 client specificity is provided by 49 different co-factors known as J domain proteins (JDPs). However, the cellular function and client specificity of JDPs have largely remained elusive. We have combined affinity purification-mass spectrometry (AP-MS) and proximity-dependent biotinylation (BioID) to characterize the interactome of all human JDPs and Hsp70s. The resulting network suggests specific functions for many uncharacterized JDPs, and we establish a role of conserved JDPs DNAJC9 and DNAJC27 in histone chaperoning and ciliogenesis, respectively. Unexpectedly, we find that the J domain of DNAJC27 but not of other JDPs can fully replace the function of endogenous DNAJC27, suggesting a previously unappreciated role for J domains themselves in JDP specificity. More broadly, our work expands the role of the Hsp70-regulated proteostasis network and provides a platform for further discovery of JDP-dependent functions.


Asunto(s)
Proteínas del Choque Térmico HSP40/fisiología , Proteínas HSP70 de Choque Térmico/fisiología , Dominios y Motivos de Interacción de Proteínas/fisiología , Células HEK293 , Proteínas del Choque Térmico HSP40/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Células HeLa , Humanos , Chaperonas Moleculares/metabolismo , Unión Proteica , Dominios Proteicos , Proteínas de Unión al GTP rab/metabolismo
4.
Annu Rev Genet ; 52: 109-130, 2018 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-30183406

RESUMEN

Nucleosomes compact and organize genetic material on a structural level. However, they also alter local chromatin accessibility through changes in their position, through the incorporation of histone variants, and through a vast array of histone posttranslational modifications. The dynamic nature of chromatin requires histone chaperones to process, deposit, and evict histones in different tissues and at different times in the cell cycle. This review focuses on the molecular details of canonical and variant H3-H4 histone chaperone pathways that lead to histone deposition on DNA as they are currently understood. Emphasis is placed on the most established pathways beginning with the folding, posttranslational modification, and nuclear import of newly synthesized H3-H4 histones. Next, we review the deposition of replication-coupled H3.1-H4 in S-phase and replication-independent H3.3-H4 via alternative histone chaperone pathways. Highly specialized histone chaperones overseeing the deposition of histone variants are also briefly discussed.


Asunto(s)
Chaperonas de Histonas/genética , Código de Histonas/genética , Histonas/genética , Nucleosomas/genética , Cromatina/genética , Replicación del ADN/genética , Fase S/genética , Transducción de Señal/genética
5.
Mol Cell Proteomics ; 23(5): 100767, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38615877

RESUMEN

DNA replication is a fundamental cellular process that ensures the transfer of genetic information during cell division. Genome duplication takes place in S phase and requires a dynamic and highly coordinated recruitment of multiple proteins at replication forks. Various genotoxic stressors lead to fork instability and collapse, hence the need for DNA repair pathways. By identifying the multitude of protein interactions implicated in those events, we can better grasp the complex and dynamic molecular mechanisms that facilitate DNA replication and repair. Proximity-dependent biotin identification was used to identify associations with 17 proteins within four core replication components, namely the CDC45/MCM2-7/GINS helicase that unwinds DNA, the DNA polymerases, replication protein A subunits, and histone chaperones needed to disassemble and reassemble chromatin. We further investigated the impact of genotoxic stress on these interactions. This analysis revealed a vast proximity association network with 108 nuclear proteins further modulated in the presence of hydroxyurea; 45 being enriched and 63 depleted. Interestingly, hydroxyurea treatment also caused a redistribution of associations with 11 interactors, meaning that the replisome is dynamically reorganized when stressed. The analysis identified several poorly characterized proteins, thereby uncovering new putative players in the cellular response to DNA replication arrest. It also provides a new comprehensive proteomic framework to understand how cells respond to obstacles during DNA replication.


Asunto(s)
Replicación del ADN , Hidroxiurea , Proteómica , Hidroxiurea/farmacología , Proteómica/métodos , Humanos , Daño del ADN , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proteoma/metabolismo
6.
Mol Cell Proteomics ; 21(10): 100411, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36089195

RESUMEN

Chromatin structure, transcription, DNA replication, and repair are regulated via locus-specific incorporation of histone variants and posttranslational modifications that guide effector chromatin-binding proteins. Here we report unbiased, quantitative interactomes for the replication-coupled (H3.1) and replication-independent (H3.3) histone H3 variants based on BioID proximity labeling, which allows interactions in intact, living cells to be detected. Along with a significant proportion of previously reported interactions detected by affinity purification followed by mass spectrometry, three quarters of the 608 histone-associated proteins that we identified are new, uncharacterized histone associations. The data reveal important biological nuances not captured by traditional biochemical means. For example, we found that the chromatin assembly factor-1 histone chaperone not only deposits the replication-coupled H3.1 histone variant during S-phase but also associates with H3.3 throughout the cell cycle in vivo. We also identified other variant-specific associations, such as with transcription factors, chromatin regulators, and with the mitotic machinery. Our proximity-based analysis is thus a rich resource that extends the H3 interactome and reveals new sets of variant-specific associations.


Asunto(s)
Chaperonas de Histonas , Histonas , Histonas/metabolismo , Chaperonas de Histonas/genética , Chaperonas de Histonas/metabolismo , Cromatina , Factor 1 de Ensamblaje de la Cromatina/genética , Factor 1 de Ensamblaje de la Cromatina/metabolismo , Factores de Transcripción/metabolismo , Nucleosomas
7.
Nucleic Acids Res ; 50(22): 12809-12828, 2022 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-36537238

RESUMEN

Disruptive mutations in the chromodomain helicase DNA-binding protein 8 gene (CHD8) have been recurrently associated with autism spectrum disorders (ASDs). Here we investigated how chromatin reacts to CHD8 suppression by analyzing a panel of histone modifications in induced pluripotent stem cell-derived neural progenitors. CHD8 suppression led to significant reduction (47.82%) in histone H3K36me3 peaks at gene bodies, particularly impacting on transcriptional elongation chromatin states. H3K36me3 reduction specifically affects highly expressed, CHD8-bound genes and correlates with altered alternative splicing patterns of 462 genes implicated in 'regulation of RNA splicing' and 'mRNA catabolic process'. Mass spectrometry analysis uncovered a novel interaction between CHD8 and the splicing regulator heterogeneous nuclear ribonucleoprotein L (hnRNPL), providing the first mechanistic insights to explain the CHD8 suppression-derived splicing phenotype, partly implicating SETD2, a H3K36me3 methyltransferase. In summary, our results point toward broad molecular consequences of CHD8 suppression, entailing altered histone deposition/maintenance and RNA processing regulation as important regulatory processes in ASD.


Asunto(s)
Empalme Alternativo , Cadherinas , Histonas , Cromatina , Histonas/metabolismo , Lisina/metabolismo , ARN/metabolismo , Cadherinas/genética , Humanos , Células Madre Pluripotentes Inducidas , Células-Madre Neurales , Trastorno del Espectro Autista/genética
8.
PLoS Genet ; 17(11): e1009909, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34780483

RESUMEN

The ATRX ATP-dependent chromatin remodelling/helicase protein associates with the DAXX histone chaperone to deposit histone H3.3 over repetitive DNA regions. Because ATRX-protein interactions impart functions, such as histone deposition, we used proximity-dependent biotinylation (BioID) to identify proximal associations for ATRX. The proteomic screen captured known interactors, such as DAXX, NBS1, and PML, but also identified a range of new associating proteins. To gauge the scope of their roles, we examined three novel ATRX-associating proteins that likely differed in function, and for which little data were available. We found CCDC71 to associate with ATRX, but also HP1 and NAP1, suggesting a role in chromatin maintenance. Contrastingly, FAM207A associated with proteins involved in ribosome biosynthesis and localized to the nucleolus. ATRX proximal associations with the SLF2 DNA damage response factor help inhibit telomere exchanges. We further screened for the proteomic changes at telomeres when ATRX, SLF2, or both proteins were deleted. The loss caused important changes in the abundance of chromatin remodelling, DNA replication, and DNA repair factors at telomeres. Interestingly, several of these have previously been implicated in alternative lengthening of telomeres. Altogether, this study expands the repertoire of ATRX-associating proteins and functions.


Asunto(s)
Proteínas Co-Represoras/genética , Proteínas de Unión al ADN/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas Nucleares/genética , Proteína Nuclear Ligada al Cromosoma X/genética , Biotinilación/genética , Proteínas de Ciclo Celular/genética , Línea Celular , Cromatina/genética , Homólogo de la Proteína Chromobox 5/genética , Daño del ADN/genética , Reparación del ADN/genética , Chaperonas de Histonas/genética , Histonas/genética , Humanos , Chaperonas Moleculares/genética , Proteína de la Leucemia Promielocítica/genética , Telómero/genética , ARNt Metiltransferasas
9.
Hum Genet ; 142(11): 1571-1586, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37755482

RESUMEN

CYP26B1 metabolizes retinoic acid in the developing embryo to regulate its levels. A limited number of individuals with pathogenic variants in CYP26B1 have been documented with a varied phenotypic spectrum, spanning from a severe manifestation involving skull anomalies, craniosynostosis, encephalocele, radio-humeral fusion, oligodactyly, and a narrow thorax, to a milder presentation characterized by craniosynostosis, restricted radio-humeral joint mobility, hearing loss, and intellectual disability. Here, we report two families with CYP26B1-related phenotypes and describe the data obtained from functional studies of the variants. Exome and Sanger sequencing were used for variant identification in family 1 and family 2, respectively. Family 1 reflects a mild phenotype, which includes craniofacial dysmorphism with brachycephaly (without craniosynostosis), arachnodactyly, reduced radioulnar joint movement, conductive hearing loss, learning disability-and compound heterozygous CYP26B1 variants: (p.[(Pro118Leu)];[(Arg234Gln)]) were found. In family 2, a stillborn fetus presented a lethal phenotype with spina bifida occulta, hydrocephalus, poor skeletal mineralization, synostosis, limb defects, and a synonymous homozygous variant in CYP26B1: c.1083C > A. A minigene assay revealed that the synonymous variant created a new splice site, removing part of exon 5 (p.Val361_Asp382del). Enzymatic activity was assessed using a luciferase assay, demonstrating a notable reduction in exogenous retinoic acid metabolism for the variant p.Val361_Asp382del. (~ 3.5 × decrease compared to wild-type); comparatively, the variants p.(Pro118Leu) and p.(Arg234Gln) demonstrated a partial loss of metabolism (1.7× and 2.3× reduction, respectively). A proximity-dependent biotin identification assay reaffirmed previously reported ER-resident protein interactions. Additional work into these interactions is critical to determine if CYP26B1 is involved with other biological events on the ER. Immunofluorescence assay suggests that mutant CYP26B1 is still localized in the endoplasmic reticulum. These results indicate that novel pathogenic variants in CYP26B1 result in varying levels of enzymatic activity that impact retinoic acid metabolism and relate to the distinct phenotypes observed.


Asunto(s)
Craneosinostosis , Tretinoina , Humanos , Ácido Retinoico 4-Hidroxilasa/genética , Tretinoina/metabolismo , Homocigoto , Exones , Craneosinostosis/genética
10.
Mol Cell ; 60(4): 697-709, 2015 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-26527279

RESUMEN

Despite minimal disparity at the sequence level, mammalian H3 variants bind to distinct sets of polypeptides. Although histone H3.1 predominates in cycling cells, our knowledge of the soluble complexes that it forms en route to deposition or following eviction from chromatin remains limited. Here, we provide a comprehensive analysis of the H3.1-binding proteome, with emphasis on its interactions with histone chaperones and components of the replication fork. Quantitative mass spectrometry revealed 170 protein interactions, whereas a large-scale biochemical fractionation of H3.1 and associated enzymatic activities uncovered over twenty stable protein complexes in dividing human cells. The sNASP and ASF1 chaperones play pivotal roles in the processing of soluble histones but do not associate with the active CDC45/MCM2-7/GINS (CMG) replicative helicase. We also find TONSL-MMS22L to function as a H3-H4 histone chaperone. It associates with the regulatory MCM5 subunit of the replicative helicase.


Asunto(s)
Chaperonas de Histonas/metabolismo , Histonas/metabolismo , Espectrometría de Masas/métodos , Proteínas de Ciclo Celular/metabolismo , Proteínas de Unión al ADN/metabolismo , Células HeLa , Humanos , Proteínas de Mantenimiento de Minicromosoma/metabolismo , FN-kappa B/metabolismo , Proteínas Nucleares/metabolismo , Unión Proteica
11.
Acta Neuropathol ; 144(5): 1027-1048, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36070144

RESUMEN

Histone H3 mutations at amino acids 27 (H3K27M) and 34 (H3G34R) are recurrent drivers of pediatric-type high-grade glioma (pHGG). H3K27M mutations lead to global disruption of H3K27me3 through dominant negative PRC2 inhibition, while H3G34R mutations lead to local losses of H3K36me3 through inhibition of SETD2. However, their broader oncogenic mechanisms remain unclear. We characterized the H3.1K27M, H3.3K27M and H3.3G34R interactomes, finding that H3K27M is associated with epigenetic and transcription factor changes; in contrast H3G34R removes a break on cryptic transcription, limits DNA methyltransferase access, and alters mitochondrial metabolism. All 3 mutants had altered interactions with DNA repair proteins and H3K9 methyltransferases. H3K9me3 was reduced in H3K27M-containing nucleosomes, and cis-H3K9 methylation was required for H3K27M to exert its effect on global H3K27me3. H3K9 methyltransferase inhibition was lethal to H3.1K27M, H3.3K27M and H3.3G34R pHGG cells, underscoring the importance of H3K9 methylation for oncohistone-mutant gliomas and suggesting it as an attractive therapeutic target.


Asunto(s)
Glioma , Histonas , Aminoácidos/genética , Niño , ADN , Glioma/genética , Glioma/metabolismo , Histonas/genética , Humanos , Mutación/genética , Nucleosomas , Factores de Transcripción/genética
12.
Anim Biotechnol ; 33(4): 701-709, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33017262

RESUMEN

Jewel tetra (Hyphessobrycon eques) is a freshwater fish found in several rivers and basins in South America. The present study is the first study to create a panel of microsatellite markers for detecting genetic diversity in H. eques and evaluating the application of these markers in Serrapinnus notomelas. In total, 44 individuals were genotyped from the natural (WIL, n = 20) and stock in captivity (CAP, n = 24) population. Moreover, 19 microsatellite markers were obtained, of which only 8 loci presented a high degree polymorphism. In total, 45 alleles were detected, ranging from 126 bp (Hype2G2) to 420 bp (Hype2E2). The Hardy-Weinberg equilibrium (p < 0.05) revealed significant difference in one locus in WIL (Hype1G4) and three loci in CAP (Hype1F4, Hype2C3, and Hype2G2). Null alleles (p < 0.05) were present in only one locus (Hype1G4). The WIL and CAP populations revealed high genetic diversity during FST analysis. The cross-amplification test for S. notomelas revealed that only two loci (Hype2C3 and Hype2G2B) presented satisfactory transferability results. The developed microsatellite primers will be useful in studying the genetic diversity and population structure of H. eques in wild populations and fish farms in the Brazilian and other South American basins.


Asunto(s)
Genética de Población , Repeticiones de Microsatélite , Alelos , Animales , Variación Genética/genética , Genotipo , Repeticiones de Microsatélite/genética , Polimorfismo Genético
13.
J Anim Breed Genet ; 139(2): 127-135, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34553431

RESUMEN

Variance components and heritabilities for daily weight gain (DWG) were estimated for Nile tilapia farmed in cages across nine generations (G1-G9) of selection in a breeding program in Brazil. DWG was measured in 16,272 accumulated tagged animals representing 535 full- and half-sib families of Nile tilapia under cage farming. The additive genetic variance showed a slight variation (0.051-0.066), and heritability estimates ranged from 0.20 to 0.33. The common environmental effect accounted for a higher proportion of the total variance in DWG, especially in the last generations (6%-24%). A genetic trend based on all data available showed a substantial increase in the DWG (about 3.3% per generation) of Nile tilapia across nine generations of selection. Furthermore, our results demonstrate ample scope for further genetic improvement.


Asunto(s)
Cíclidos , Animales , Brasil , Cíclidos/genética , Aumento de Peso
14.
J Anim Breed Genet ; 138(6): 731-738, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33891788

RESUMEN

Digital image analysis is a practical, non-invasive, and relatively low-cost tool that may assist in the evaluation of body traits in Nile tilapia, being particularly useful for assessing difficult-to-measure variables, such as body areas. In this study, we aimed to estimate variance components and genetic parameters for body areas of Nile tilapia obtained by digital images. The data set comprised body weight (BW) records of 1,917 pond-reared fish at 366 days of age. Of this total, 656 animals were photographed and subjected to image analysis of trunk area (TA), head area (HA), caudal fin area (CFA) and fillet area (FA). Heritabilities and genetic correlations were estimated through multiple-trait models based on Bayesian inference. Heritability estimates for BW, TA, HA, CFA and FA were 0.25, 0.23, 0.26, 0.21 and 0.25, respectively. Genetic correlations between the traits were high and positive, ranging from 0.70 to 0.98. We highlight the genetic correlation between BW and TA (rG  = 0.98) and FA (rG  = 0.97). In view of the observed results, it can be concluded that trunk and fillet areas obtained by digital image analysis can lead to indirect genetic gains in weight and other body areas. In addition, the areas studied have potential as a selection criterion and may assist in studies on changes in the body shape in Nile tilapia.


Asunto(s)
Cíclidos , Animales , Teorema de Bayes , Peso Corporal , Cíclidos/genética , Fenotipo
15.
Chaos ; 30(5): 053114, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32491894

RESUMEN

In this paper, we introduce a class of continuous time dynamical planar systems that is capable of generating attractors in the plane by means of the use of hysteresis and at least two unstable foci. This class of systems shows stretching and folding behavior due to unstable equilibria and hysteresis. Hysteresis is used to overwhelm the constraints on the behavior of planar systems. This class of systems is derived from three-dimensional piecewise linear systems that have two manifolds, one stable and the other unstable, to generate heteroclinic chaos. Two numerical examples are given accordingly to the developed theory.

16.
J Virol ; 92(14)2018 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-29743367

RESUMEN

To replicate and persist in human cells, linear double-stranded DNA (dsDNA) viruses, such as Epstein-Barr virus (EBV), must overcome the host DNA damage response (DDR) that is triggered by the viral genomes. Since this response is necessary to maintain cellular genome integrity, its inhibition by EBV is likely an important factor in the development of cancers associated with EBV infection, including gastric carcinoma. Here we present the first extensive screen of EBV proteins that inhibit dsDNA break signaling. We identify the BKRF4 tegument protein as a DDR inhibitor that interferes with histone ubiquitylation at dsDNA breaks and recruitment of the RNF168 histone ubiquitin ligase. We further show that BKRF4 binds directly to histones through an acidic domain that targets BKRF4 to cellular chromatin and is sufficient to inhibit dsDNA break signaling. BKRF4 transcripts were detected in EBV-positive gastric carcinoma cells (AGS-EBV), and these increased in lytic infection. Silencing of BKRF4 in both latent and lytic AGS-EBV cells (but not in EBV-negative AGS cells) resulted in increased dsDNA break signaling, confirming a role for BKRF4 in DDR inhibition in the context of EBV infection and suggesting that BKRF4 is expressed in latent cells. BKRF4 was also found to be consistently expressed in EBV-positive gastric tumors in the absence of a full lytic infection. The results suggest that BKRF4 plays a role in inhibiting the cellular DDR in latent and lytic EBV infection and that the resulting accumulation of DNA damage might contribute to development of gastric carcinoma.IMPORTANCE Epstein-Barr virus (EBV) infects most people worldwide and is causatively associated with several types of cancer, including ∼10% of gastric carcinomas. EBV encodes ∼80 proteins, many of which are believed to manipulate cellular regulatory pathways but are poorly characterized. The DNA damage response (DDR) is one such pathway that is critical for maintaining genome integrity and preventing cancer-associated mutations. In this study, a screen for EBV proteins that inhibit the DDR identified BKRF4 as a DDR inhibitor that binds histones and blocks their ubiquitylation at the DNA damage sites. We also present evidence that BKRF4 is expressed in both latent and lytic forms of EBV infection, where it downregulates the DDR, as well as in EBV-positive gastric tumors. The results suggest that BKRF4 could contribute to the development of gastric carcinoma through its ability to inhibit the DDR.


Asunto(s)
Infecciones por Virus de Epstein-Barr/metabolismo , Herpesvirus Humano 4/fisiología , Histonas/metabolismo , Neoplasias Gástricas/virología , Proteínas Virales/genética , Proteínas Virales/metabolismo , Línea Celular Tumoral , Roturas del ADN de Doble Cadena , Reparación del ADN , Infecciones por Virus de Epstein-Barr/genética , Regulación Viral de la Expresión Génica , Biblioteca de Genes , Células HEK293 , Humanos , Dominios Proteicos , Transducción de Señal , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Proteínas Virales/química , Replicación Viral
17.
Nature ; 495(7440): 255-9, 2013 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-23486064

RESUMEN

Centrosome duplication is critical for cell division, and genome instability can result if duplication is not restricted to a single round per cell cycle. Centrosome duplication is controlled in part by CP110, a centriolar protein that positively regulates centriole duplication while restricting centriole elongation and ciliogenesis. Maintenance of normal CP110 levels is essential, as excessive CP110 drives centrosome over-duplication and suppresses ciliogenesis, whereas its depletion inhibits centriole amplification and leads to highly elongated centrioles and aberrant assembly of cilia in growing cells. CP110 levels are tightly controlled, partly through ubiquitination by the ubiquitin ligase complex SCF(cyclin F) during G2 and M phases of the cell cycle. Here, using human cells, we report a new mechanism for the regulation of centrosome duplication that requires USP33, a deubiquitinating enzyme that is able to regulate CP110 levels. USP33 interacts with CP110 and localizes to centrioles primarily in S and G2/M phases, the periods during which centrioles duplicate and elongate. USP33 potently and specifically deubiquitinates CP110, but not other cyclin-F substrates. USP33 activity antagonizes SCF(cyclin F)-mediated ubiquitination and promotes the generation of supernumerary centriolar foci, whereas ablation of USP33 destabilizes CP110 and thereby inhibits centrosome amplification and mitotic defects. To our knowledge, we have identified the first centriolar deubiquitinating enzyme whose expression regulates centrosome homeostasis by countering cyclin-F-mediated destruction of a key substrate. Our results point towards potential therapeutic strategies for inhibiting tumorigenesis associated with centrosome amplification.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Centrosoma/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Fosfoproteínas/metabolismo , Ubiquitina Tiolesterasa/metabolismo , Ubiquitinación , Animales , Ciclo Celular , Línea Celular , Centriolos/metabolismo , Ciclinas/metabolismo , Homeostasis , Humanos , Neoplasias/patología , Neoplasias/terapia , Estabilidad Proteica , Proteínas Ligasas SKP Cullina F-box/metabolismo
18.
Genes Dev ; 24(13): 1334-8, 2010 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-20595228

RESUMEN

Understanding exactly how chromatin is assembled is paramount to addressing how select histone modifications may be transmitted, a putative epigenetic process. In the June 15, 2010, issue of Genes & Development, Drané and colleagues (pp. 1253-1265) identified DAXX as a novel H3.3-specific chaperone. This finding, in the context of others published by Goldberg and colleagues in Cell and Sawatsubashi and colleagues (pp. 159-170) in the January 15, 2010, issue of Genes & Development, provides the impetus for uncovering the mechanistic and functional properties of alternative histone deposition pathways.


Asunto(s)
Histonas/metabolismo , Chaperonas Moleculares/metabolismo , Secuencia de Aminoácidos , Animales , Ciclo Celular/fisiología , Epigénesis Genética , Regulación del Desarrollo de la Expresión Génica , Variación Genética , Histonas/química , Histonas/genética , Humanos , Patrón de Herencia , Chaperonas Moleculares/genética , Datos de Secuencia Molecular , Alineación de Secuencia
19.
Annu Rev Genet ; 43: 559-99, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19886812

RESUMEN

Chromatin is a highly regulated nucleoprotein complex through which genetic material is structured and maneuvered to elicit cellular processes, including transcription, cell division, differentiation, and DNA repair. In eukaryotes, the core of this structure is composed of nucleosomes, or repetitive histone octamer units typically enfolded by 147 base pairs of DNA. DNA is arranged and indexed through these nucleosomal structures to adjust local chromatin compaction and accessibility. Histones are subject to multiple covalent posttranslational modifications, some of which alter intrinsic chromatin properties, others of which present or hinder binding modules for non-histone, chromatin-modifying complexes. Although certain histone marks correlate with different biological outputs, we have yet to fully appreciate their effects on transcription and other cellular processes. Tremendous advancements over the past years have uncovered intriguing histone-related matters and raised important related questions. This review revisits past breakthroughs and discusses novel developments that pertain to histone posttranslational modifications and the affects they have on transcription and DNA packaging.


Asunto(s)
Cromatina/metabolismo , Histonas/metabolismo , Animales , Empaquetamiento del ADN , Células Eucariotas/metabolismo , Humanos , Procesamiento Proteico-Postraduccional , Transcripción Genética
20.
EMBO Rep ; 11(12): 969-76, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20948544

RESUMEN

We have identified the E3 ligase Traf7 as a direct MyoD1 target and show that cell cycle exit-an early event in muscle differentiation-is linked to decreased Traf7 expression. Depletion of Traf7 accelerates myogenesis, in part through downregulation of nuclear factor-κB (NF-κB) activity. We used a proteomic screen to identify NEMO, the NF-κB essential modulator, as a Traf7-interacting protein. Finally, we show that ubiquitylation of NF-κB essential modulator is regulated exclusively by Traf7 activity in myoblasts. Our results suggest a new mechanism by which MyoD1 function is coupled to NF-κB activity through Traf7, regulating the balance between cell cycle progression and differentiation during myogenesis.


Asunto(s)
Desarrollo de Músculos/genética , Proteína MioD/metabolismo , FN-kappa B/metabolismo , Transcripción Genética , Péptidos y Proteínas Asociados a Receptores de Factores de Necrosis Tumoral/genética , Animales , Ciclo Celular/genética , Diferenciación Celular/genética , Ciclina D1/metabolismo , Regulación de la Expresión Génica , Quinasa I-kappa B/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones , Mioblastos/citología , Mioblastos/metabolismo , Fosforilación , Unión Proteica , Proteína de Retinoblastoma/metabolismo , Péptidos y Proteínas Asociados a Receptores de Factores de Necrosis Tumoral/deficiencia , Péptidos y Proteínas Asociados a Receptores de Factores de Necrosis Tumoral/metabolismo , Ubiquitina/metabolismo , Ubiquitinación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA