Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
J Chem Inf Model ; 62(18): 4435-4447, 2022 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-36103656

RESUMEN

Periodic boundary conditions (PBCs) are a standard feature of molecular simulations, and their mathematical and computational aspects are well-understood and relatively straightforward. However, they can in practice be a nuisance when simulating heterogeneous systems, especially when different types of molecules change their relative positions during the simulation. Although the translation required to fix a broken molecular complex of interest can in most cases be easily inferred by visual inspection, it typically depends on the type of system, its configuration, and the box geometry, making automated procedures problematic. We present here a general algorithm, named FixBox, that can fix a molecular complex of interest from a minimal set of definitions of its assembling parts and intended arrangement in the simulation box. It uses a unified triclinic framework for the box geometric periodicity, does not require a full molecular topology, and is applicable to various types of systems and configurations, making it possible to fully and easily automate the fixing of a broken molecular complex. The performance of the algorithm is illustrated with problematic configurations of various types of simulated systems. The presented formal framework can generally be useful for algorithms that need to perform geometrical transformations on systems with PBCs.


Asunto(s)
Algoritmos , Simulación por Computador
2.
Biochim Biophys Acta ; 1857(6): 759-71, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27033303

RESUMEN

Cytochrome c oxidases (CcOs) are the terminal enzymes of the respiratory chain in mitochondria and most bacteria. These enzymes reduce dioxygen (O(2)) to water and, simultaneously, generate a transmembrane electrochemical proton gradient. Despite their importance in the aerobic metabolism and the large amount of structural and biochemical data available for the A1-type CcO family, there is still no consensually accepted description of the molecular mechanisms operating in this protein. A substantial number of questions about the CcO's working mechanism remain to be answered, including how the protonation behavior of some key residues is modulated during a reduction cycle and how is the conformation of the protein affected by protonation. The main objective of this work was to study the protonation-conformation coupling in CcOs and identify the molecular factors that control the protonation state of some key residues. In order to directly capture the interplay between protonation and conformational effects, we have performed constant-pH MD simulations of an A1-type CcO inserted into a lipid bilayer in two redox states (oxidized and reduced) at physiological pH. From the simulations, we were able to identify several groups with unusual titration behavior that are highly dependent on the protein redox state, including the A-propionate from heme a and the D-propionate from heme a3, two key groups possibly involved in proton pumping. The protonation state of these two groups is heavily influenced by subtle conformational changes in the protein (notably of R481(I) and R482(I)) and by small changes in the hydrogen bond network.


Asunto(s)
Proteínas Bacterianas/química , Complejo IV de Transporte de Electrones/química , Simulación de Dinámica Molecular , Conformación Proteica , Rhodobacter sphaeroides/enzimología , Proteínas Bacterianas/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Hemo/química , Hemo/metabolismo , Enlace de Hidrógeno , Concentración de Iones de Hidrógeno , Hidrogenación , Cinética , Oxidación-Reducción , Protones
3.
J Chem Inf Model ; 57(2): 256-266, 2017 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-28095694

RESUMEN

Cytochrome c oxidase (CcO) couples the reduction of dioxygen to water with transmembrane proton pumping, which leads to the generation of an electrochemical gradient. In this study we analyze how one of the components of the electrochemical gradient, the difference in pH across the membrane, or ΔpH, influences the protonation states of residues in CcO. We modified our continuum electrostatics/Monte Carlo (CE/MC) method in order to include the ΔpH and applied it to the study of CcO, in what is, to our best knowledge, the first CE/MC study of CcO in the presence of a pH gradient. The inclusion of a transmembrane pH gradient allows for the identification of residues whose titration behavior depends on the pH on both sides of the membrane. Among the several residues with unusual titration profiles, three are well-known key residues in the proton transfer process of CcO: E286I, Y288I, and K362I. All three residues have been previously identified as being critical for the catalytic or proton pumping functions of CcO. Our results suggest that when the pH gradient increases, these residues may be part of a regulatory mechanism to stem the proton flow.


Asunto(s)
Complejo IV de Transporte de Electrones/química , Complejo IV de Transporte de Electrones/metabolismo , Electricidad Estática , Concentración de Iones de Hidrógeno , Modelos Moleculares , Oxidación-Reducción , Conformación Proteica , Protones , Rhodobacter sphaeroides/enzimología
4.
Amino Acids ; 48(1): 307-18, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26347373

RESUMEN

Recently, a designed class of efficient analgesic drugs derived from an endogenous neuropeptide, kyotorphin (KTP, Tyr-Arg) combining C-terminal amidation (KTP-NH2) and N-terminal conjugation to ibuprofen (Ib), IbKTP-NH2, was developed. The Ib moiety is an enhancer of KTP-NH2 analgesic action. In the present study, we have tested the hypothesis that KTP-NH2 is an enhancer of the Ib anti-inflammatory action. Moreover, the impact of the IbKTP-NH2 conjugation on microcirculation was also evaluated by a unified approach based on intravital microscopy in the murine cremasteric muscle. Our data show that KTP-NH2 and conjugates do not cause damage on microcirculatory environment and efficiently decrease the number of leukocyte rolling induced by lipopolysaccharide (LPS). Isothermal titration calorimetry showed that the drugs bind to LPS directly thus contributing to LPS aggregation and subsequent elimination. In a parallel study, molecular dynamics simulations and NMR data showed that the IbKTP-NH2 tandem adopts a preferential "stretched" conformation in lipid bilayers and micelles, with the simulations indicating that the Ib moiety is anchored in the hydrophobic core, which explains the improved partition of IbKTP-NH2 to membranes and the permeability of lipid bilayers to this conjugate relative to KTP-NH2. The ability to bind glycolipids concomitant to the anchoring in the lipid membranes through the Ib residue explains the analgesic potency of IbKTP-NH2 given the enriched glycocalyx of the blood-brain barrier cells. Accumulation of IbKTP-NH2 in the membrane favors both direct permeation and local interaction with putative receptors as the location of the KTP-NH2 residue of IbKTP-NH2 and free KTP-NH2 in lipid membranes is the same.


Asunto(s)
Analgésicos/química , Antiinflamatorios/química , Endorfinas/metabolismo , Membrana Dobles de Lípidos/metabolismo , Analgésicos/metabolismo , Animales , Antiinflamatorios/metabolismo , Endorfinas/química , Femenino , Membrana Dobles de Lípidos/química , Lipopolisacáridos/química , Lipopolisacáridos/metabolismo , Masculino , Ratones , Simulación de Dinámica Molecular , Estructura Molecular
5.
J Chem Inf Model ; 55(10): 2206-17, 2015 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-26397014

RESUMEN

Pulmonary surfactant protein C (SP-C) is a small peptide with two covalently linked fatty acyl chains that plays a crucial role in the formation and stabilization of the pulmonary surfactant reservoirs during the compression and expansion steps of the respiratory cycle. Although its function is known to be tightly related to its highly hydrophobic character and key interactions maintained with specific lipid components, much is left to understand about its molecular mechanism of action. Also, although it adopts a mainly helical structure while associated with the membrane, factors as pH variation and deacylation have been shown to affect its stability and function. In this work, the conformational behavior of both the acylated and deacylated SP-C isoforms was studied in a DPPC bilayer under different pH conditions using constant-pH molecular dynamics simulations. Our findings show that both protein isoforms are remarkably stable over the studied pH range, even though the acylated isoform exhibits a labile helix-turn-helix motif rarely observed in the other isoform. We estimate similar tilt angles for the two isoforms over the studied pH range, with a generally higher degree of internalization of the basic N-terminal residues in the deacylated case, and observe and discuss some protonation-conformation coupling effects. Both isoforms establish contacts with the surrounding lipid molecules (preferentially with the sn-2 ester bonds) and have a local effect on the conformational behavior of the surrounding lipid molecules, the latter being more pronounced for acylated SP-C.


Asunto(s)
Modelos Biológicos , Simulación de Dinámica Molecular , Proteína C Asociada a Surfactante Pulmonar/química , Concentración de Iones de Hidrógeno , Isoformas de Proteínas/química , Estabilidad Proteica
6.
J Chem Inf Model ; 53(11): 2979-89, 2013 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-24106805

RESUMEN

The pulmonary surfactant protein C (SP-C) is a small highly hydrophobic protein that adopts a mainly helical structure while associated with the membrane but misfolds into a ß-rich metastable structure upon deacylation, membrane dissociation, and exposure to the neutral pH of the aqueous alveolar subphase, eventually leading to the formation of amyloid aggregates associated with pulmonary alveolar proteinosis. The present constant-pH MD study of the acylated and deacylated isoforms of SP-C in a chloroform/methanol/water mixture, often used to mimic the membrane environment, shows that the loss of the acyl groups has a structural destabilizing effect and that the increase of pH promotes intraprotein contacts which contribute to the loss of helical structure in solution. These contacts result from the poor solvation of charged groups by the solvent mixture, which exhibits a limited membrane-mimetic character. Although a single SP-C molecule was used in the simulations, we propose that analogous intermolecular interactions may play a role in the early stages of the protein misfolding and aggregation in this mixture.


Asunto(s)
Cloroformo/química , Metanol/química , Simulación de Dinámica Molecular , Proteína C Asociada a Surfactante Pulmonar/química , Solventes/química , Agua/química , Acilación , Membrana Celular/química , Humanos , Concentración de Iones de Hidrógeno , Cinética , Pliegue de Proteína , Estructura Secundaria de Proteína , Soluciones , Termodinámica
7.
J Org Chem ; 77(16): 6816-24, 2012 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-22834635

RESUMEN

A new heteroditopic macrobicyclic compound (t(2)pN(5)O(3)) containing two separate polyoxa and polyaza compartments was synthesized in good yield through a [1 + 1] "tripod-tripod coupling" strategy. The X-ray crystal structure of H(3)t(2)pN(5)O(3)(3+) revealed the presence of one encapsulated water molecule accepting two hydrogen bonds from two protonated secondary amines and donating a hydrogen bond to one amino group. The acid-base behavior of the compound was studied by potentiometry at 298.2 K in aqueous solution and at ionic strength 0.10 M in KCl. The results revealed unusual protonation behavior, namely a surprisingly low fourth protonation constant contrary to what was expected for the compound. (1)H NMR and DOSY experiments, as well as molecular modeling studies, showed that the water encapsulation and the conformation observed in the solid state are retained in solution. The strong binding of the encapsulated water molecule, reinforced by the cooperative occurrence of a trifurcated hydrogen bond at the polyether compartment of the macrobicycle, account for the very low log K(4)(H) value obtained.


Asunto(s)
Compuestos de Azabiciclo/síntesis química , Protones , Agua/química , Cristalografía por Rayos X , Enlace de Hidrógeno , Concentración de Iones de Hidrógeno , Cinética , Espectroscopía de Resonancia Magnética , Conformación Molecular , Simulación de Dinámica Molecular , Concentración Osmolar , Cloruro de Potasio/química , Potenciometría , Soluciones , Temperatura
8.
J Chem Theory Comput ; 18(3): 1982-2001, 2022 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-35171602

RESUMEN

Protein-protein association is often mediated by electrostatic interactions and modulated by pH. However, experimental and computational studies have often overlooked the effect of association on the protonation state of the protein. In this work, we present a methodological approach based on constant-pH molecular dynamics (MD), which aims to provide a detailed description of a pH-dependent protein-protein association, and apply it to the dimerization of ß-lactoglobulin (BLG). A selection of analyses is performed using the data generated by constant-pH MD simulations of monomeric and dimeric forms of bovine BLG, in the pH range 3-8. First, we estimate free energies of dimerization using a computationally inexpensive approach based on the Wyman-Tanford linkage theory, calculated in a new way through the use of thermodynamically based splines. The individual free energy contribution of each titratable site is also calculated, allowing for identification of relevant residues. Second, the correlations between the proton occupancies of pairs of sites are calculated (using the Pearson coefficient), and extensive networks of correlated sites are observed at acidic pH values, sometimes involving distant pairs. In general, strongly correlated sites are also slow proton exchangers and contribute significantly to the pH-dependency of the dimerization free energy. Third, we use ionic density as a fingerprint of protein charge distribution and observe electrostatic complementarity between the monomer faces that form the dimer interface, more markedly at the isoionic point (where maximum dimerization occurs) than at other pH values, which might contribute to guide the association. Finally, the pH-dependent dimerization modes are inspected using PCA, among other analyses, and two states are identified: a relaxed state at pH 4-8 (with the typical alignment of the crystallographic structure) and a compact state at pH 3-4 (with a tighter association and rotated alignment). This work shows that an approach based on constant-pH MD simulations can produce rich detailed pictures of pH-dependent protein associations, as illustrated for BLG dimerization.


Asunto(s)
Lactoglobulinas , Simulación de Dinámica Molecular , Animales , Bovinos , Dimerización , Concentración de Iones de Hidrógeno , Lactoglobulinas/química , Lactoglobulinas/metabolismo , Electricidad Estática
9.
J Phys Chem B ; 126(45): 9123-9136, 2022 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-36321840

RESUMEN

Ions are involved in multiple biological processes and may exist bound to biomolecules or may be associated with their surface. Although the presence of ions in nucleic acids has traditionally gained more interest, ion-protein interactions, often with a marked dependency on pH, are beginning to gather attention. Here we present a detailed analysis on the binding and distribution of ions around ß-lactoglobulin using a constant-pH MD (CpHMD) method, at a pH range 3-8, and compare it with the more traditional Poisson-Boltzmann (PB) model and the existing experimental data. Most analyses used ion concentration maps built around the protein, obtained from either the CpHMD simulations or PB calculations. The requirements of approximate charge neutrality and ionic strength equal to bulk, imposed on the MD box, imply that the absolute value of the ion excess should be half the protein charge, which is in agreement with experimental observation on other proteins ( Proc. Natl. Acad. Sci. U.S.A. 2021, 118, e2015879118) and lends support to this protocol. In addition, the protein total charge (including territorially bound ions) estimated with MD is in excellent agreement with electrophoretic measurements. Overall, the CpHMD simulations show good agreement with the nonlinear form of the PB (NLPB) model but not with its linear form, which involves a theoretical inconsistency in the calculation of the concentration maps. In several analyses, the observed pH-dependent trends for the counterions and co-ions are those generally expected, and the ion concentration maps correctly converge to the bulk ionic strength as one moves away from the protein. Despite the overall similarity, the CpHMD and NLPB approaches show some discrepancies when analyzed in more detail, which may be related to an apparent overestimation of counterion excess and underestimation of co-ion exclusion by the NLPB model, particularly at short distances from the protein.


Asunto(s)
ADN , Lactoglobulinas , Conformación de Ácido Nucleico , ADN/química , Iones , Concentración de Iones de Hidrógeno
11.
Sci Rep ; 10(1): 20082, 2020 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-33208852

RESUMEN

The influenza virus fusion process, whereby the virus fuses its envelope with the host endosome membrane to release the genetic material, takes place in the acidic late endosome environment. Acidification triggers a large conformational change in the fusion protein, hemagglutinin (HA), which enables the insertion of the N-terminal region of the HA2 subunit, known as the fusion peptide, into the membrane of the host endosome. However, the mechanism by which pH modulates the molecular properties of the fusion peptide remains unclear. To answer this question, we performed the first constant-pH molecular dynamics simulations of the influenza fusion peptide in a membrane, extending for 40 µs of aggregated time. The simulations were combined with spectroscopic data, which showed that the peptide is twofold more active in promoting lipid mixing of model membranes at pH 5 than at pH 7.4. The realistic treatment of protonation introduced by the constant-pH molecular dynamics simulations revealed that low pH stabilizes a vertical membrane-spanning conformation and leads to more frequent contacts between the fusion peptide and the lipid headgroups, which may explain the increase in activity. The study also revealed that the N-terminal region is determinant for the peptide's effect on the membrane.


Asunto(s)
Membrana Celular/metabolismo , Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Fusión de Membrana , Simulación de Dinámica Molecular , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Conformación Proteica
12.
J Phys Chem Lett ; 10(8): 1737-1742, 2019 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-30908067

RESUMEN

Under strong sunlight, plants avoid photooxidation by quenching the excess absorbed energy. Quenching is triggered by PsbS, a membrane protein that is activated and deactivated by the light-dependent pH changes in the thylakoid lumen. The mechanism of action of this protein is unknown, but it was suggested that several glutamates act as pH sensors. However, the p Ka of glutamate is several pH units below the physiological values in the lumen. Thus, how can PsbS sense the pH of the lumen, and how does it respond to it? By applying a nonstandard molecular dynamics method that treats pH explicitly, we show that the lumen-exposed glutamates of PsbS have strongly shifted p Ka values and that such shifts are crucial for the pH sensitivity in physiological conditions. We also demonstrate that protonation drives a systematic unfolding of a region key for protein-protein interactions, indicating that PsbS response to pH is a functional conformational switch.

13.
ACS Omega ; 3(2): 2001-2009, 2018 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-30023821

RESUMEN

Electrostatic interactions play a pivotal role in the structure and mechanism of action of most biomolecules. There are several conceptually different methods to deal with electrostatics in molecular dynamics simulations. Ionic strength effects are usually introduced using such methodologies and can have a significant impact on the quality of the final conformation space obtained. We have previously shown that full system neutralization can lead to wrong lipidic phases in the 25% PA/PC bilayer (J. Chem. Theory Comput. 2014,10, 5483-5492). In this work, we investigate how two limit approaches to the ionic strength treatment (implicitly with GRF or using full system neutralization with either GRF or PME) can influence the conformational space of the second-generation PAMAM dendrimer. Constant-pH MD simulations were used to map PAMAM's conformational space at its full pH range (from 2.5 to 12.5). Our simulations clearly captured the coupling between protonation and conformation in PAMAM. Interestingly, the dendrimer conformational distribution was almost independent of the ionic strength treatment methods, which is in contrast to what we have observed in charged lipid bilayers. Overall, our results confirm that both GRF with implicit ionic strength and a fully neutralized system with PME are valid approaches to model charged globular systems, using the GROMOS 54A7 force field.

15.
J Phys Chem B ; 120(6): 1080-91, 2016 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-26813109

RESUMEN

The cyclic decapeptide C-Asp, containing one Asp residue and three His residues, was designed by Fragoso et al. (Chem. Eur. J. 2013, 19, 2076) to bind Cu(2+) exclusively through the side chain groups and mimic copper coordination in metalloproteins. A variant of the cyclodecapeptide where Asp is substituted by Asn (C-Asn) has also been synthesized in addition to the linear ("open") counterparts of both forms (O-Asp and O-Asn), testing the importance of cyclization and the presence of Asp in Cu(2+) coordination (Chem. Eur. J. 2013, 19, 2076; Dalton Trans. 2013, 42, 6182). All peptides formed a major species at neutral pH that was able to coordinate Cu(2+) exclusively through the neutral imidazole groups and the Asp side chain, when present, with C-Asp being the most effective. A detailed description of the protonation behavior of each histidine could help understanding the coordination species being formed in the pH range and eventually further optimizing the peptide's design. However, the standard current methods (NMR titrations) are not very suited for proximal groups titrating in the same pH range. In this work, we used the stochastic titration constant-pH molecular dynamics method to calculate the protonation curves and pKa of each titrable residue in the four decapeptides, in the absence of Cu(2+) ions. The global protonation curves obtained in our simulations are in very good agreement with the existing potentiometric titration curves. The histidines are titrating very closely, and the Asp forms abundant salt bridges with the basic residues, displaying an unusually low pKa value. In addition, we could observe that the four peptides are very unstructured in the absence of copper, and not even the cyclic forms exhibit a significant ß-sheet, unlike what could be expected from the presence of ß-turn inducer units in this type of scaffold.


Asunto(s)
Cobre/química , Simulación de Dinámica Molecular , Oligopéptidos/química , Compuestos Organometálicos/química , Concentración de Iones de Hidrógeno , Estructura Molecular , Protones
16.
J Phys Chem B ; 120(38): 10138-10152, 2016 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-27588342

RESUMEN

Dendrimers are a family of ramified synthetic molecules. pH effects and electrostatic interactions are known to be crucial players to explain the conformational and functional behaviors observed in these systems. Nonetheless, to date, no computational study involving these systems has explicitly addressed the protonation equilibrium taking place at different pH values for dendrimers containing multiple ionizable sites. Herein, we present the results of constant-pH molecular dynamics simulations performed at several pH values for four peptide dendrimers of different generations (from one to four) composed of the same type of amino acids: histidines, serines, and diaminopropionic acid. These dendrimers are known to catalyze the hydrolysis of pyrene sulfonate esters. Constant-pH MD simulations in the presence of substrate molecules at the optimum pH for catalysis are also reported. The results show that first and second generation dendrimers are almost structurally unresponsive to pH variations. For third and fourth generation dendrimers, pH plays a structuring role, with markedly different behaviors being observed when passing from acidic to neutral pH. Protonation-conformation coupling effects influence several intramolecular interactions, which, in turn, modulate the shape and structure at the different pH values. The atypical and highly pH-dependent protonation profiles of some histidine residues are also investigated. The interactions between dendrimers and substrates restrict the conformational space available to the dendrimers and enforce conformational homogeneity. This structuring effect is a consequence of the dendrimer-substrate interactions which occur through stabilizing hydrogen bonds and ion pairs between the substrate sulfonate groups and the dendrimer residues. Our results provide original fundamental data contributing to the development of novel pH-modulated dendritic systems and the improvement of the existing ones.

17.
J Chromatogr A ; 1470: 50-58, 2016 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-27712884

RESUMEN

The present work aims to achieve an additional insight into the protein partitioning behavior in aqueous two phase systems (ATPSs), together with a study on the viability of a semi-empirical model based on continuum electrostatics to predict the protein partition characteristics. The partitioning behaviors of 14 globular proteins, with different properties, were explored in three polymer/polymer ATPSs. By the Collander equation, a linear correlation between protein partitioning coefficients in all systems was observed. Using the semi-empirical model it was possible to predict the partitioning behavior of proteins. The electrostatic energy depends on the protein size and ATPSs characteristics and varies in agreement with the difference in phase dielectric constants. Linear correlation of nonpolar energy, and the solvent accessible surface area was observed. Polymer structure and concentration have a significant influence on model viability. A good qualitative prediction of preferred phase for studied proteins was observed.


Asunto(s)
Proteínas/química , Agua/química , Dextranos , Ficoll , Modelos Químicos , Polietilenglicoles , Solventes , Electricidad Estática , Termodinámica
18.
PLoS One ; 10(1): e0116737, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25635856

RESUMEN

Activation of plasminogen to its active form plasmin is essential for several key mechanisms, including the dissolution of blood clots. Activation occurs naturally via enzymatic proteolysis. We report that activation can be achieved with 280 nm light. A 2.6 fold increase in proteolytic activity was observed after 10 min illumination of human plasminogen. Irradiance levels used are in the same order of magnitude of the UVB solar irradiance. Activation is correlated with light induced disruption of disulphide bridges upon UVB excitation of the aromatic residues and with the formation of photochemical products, e.g. dityrosine and N-formylkynurenine. Most of the protein fold is maintained after 10 min illumination since no major changes are observed in the near-UV CD spectrum. Far-UV CD shows loss of secondary structure after illumination (33.4% signal loss at 206 nm). Thermal unfolding CD studies show that plasminogen retains a native like cooperative transition at ~70 ºC after UV-illumination. We propose that UVB activation of plasminogen occurs upon photo-cleavage of a functional allosteric disulphide bond, Cys737-Cys765, located in the catalytic domain and in van der Waals contact with Trp761 (4.3 Å). Such proximity makes its disruption very likely, which may occur upon electron transfer from excited Trp761. Reduction of Cys737-Cys765 will result in likely conformational changes in the catalytic site. Molecular dynamics simulations reveal that reduction of Cys737-Cys765 in plasminogen leads to an increase of the fluctuations of loop 760-765, the S1-entrance frame located close to the active site. These fluctuations affect the range of solvent exposure of the catalytic triad, particularly of Asp646 and Ser74, which acquire an exposure profile similar to the values in plasmin. The presented photonic mechanism of plasminogen activation has the potential to be used in clinical applications, possibly together with other enzymatic treatments for the elimination of blood clots.


Asunto(s)
Plasminógeno/química , Rayos Ultravioleta , Cistina/química , Activación Enzimática/efectos de la radiación , Humanos , Simulación de Dinámica Molecular , Oxidación-Reducción , Procesos Fotoquímicos , Estructura Secundaria de Proteína , Desplegamiento Proteico , Proteolisis
19.
J Chromatogr A ; 1329: 52-60, 2014 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-24461636

RESUMEN

A new model to obtain fast prediction of partition coefficients in polymer/polymer aqueous two phase systems (ATPSs) is presented, using amino acids as test systems. In particular, the partitioning behavior of eleven amino acids (glycine, alanine, leucine, phenylalanine, lysine, arginine, histidine, aspartic acid, glutamic acid, glutamine and serine) has been studied in 6 polymer/polymer ATPSs, formed by different pairs of nonionic polymers, including polyethylene glycol (PEG), Dextran, Ucon and Ficoll at 0.15M NaCl in 0.01M sodium phosphate buffer. The partition coefficients of the amino acids in the different ATPSs under study showed linear correlations as described by the Collander equation. Based on continuum electrostatics (CE), a semi-empirical model was developed to study the partitioning behavior in ATPSs. The approach employs a thermodynamic cycle where the electrostatic and nonpolar contributions to the free energy of partition are assumed to be additive. Three systems were chosen for the modeling studies: PEG-Dextran, PEG-Ficoll and Ficoll-Dextran. In general, the model was found to correctly predict the preferred phase for the studied amino acids, and, except for the charged ones, a good quantitative correlation of the calculated and experimental partition free energies was also obtained (e.g., with RMSE values of 150Jmol(-1) for PEG-Ficoll). The model performance could be improved by grouping amino acids according to their electrostatic properties, resulting in very good quantitative partition coefficient predictions (e.g., RMSE values for nonpolar amino acids of 29, 16 and 0.4Jmol(-1) for PEG-Dextran, PEG-Ficoll and Ficoll-Dextran system, respectively). The good performance of the proposed model in predicting partition coefficients of amino acids, the building blocks of proteins, offers a good prospect to its application to protein molecules and complexes.


Asunto(s)
Aminoácidos/química , Extracción Líquido-Líquido/métodos , Dextranos/química , Ficoll/química , Interacciones Hidrofóbicas e Hidrofílicas , Polietilenglicoles/química , Electricidad Estática , Termodinámica , Agua/química
20.
J Chem Theory Comput ; 9(11): 5148-57, 2013 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-26583424

RESUMEN

The peptide Ac-(cyclo-2,6)-R[KAAAD]-NH2 (cyc-RKAAAD) is a short cyclic peptide known to adopt a remarkably stable single turn α-helix in water. Due to its simplicity and the availability of thermodynamic and kinetic experimental data, cyc-RKAAAD poses as an ideal model for evaluating the aptness of current molecular dynamics (MD) simulation methodologies to accurately sample conformations that reproduce experimentally observed properties. In this work, we extensively sample the conformational space of cyc-RKAAAD using microsecond-timescale MD simulations. We characterize the peptide conformational preferences in terms of secondary structure propensities and, using Cartesian-coordinate principal component analysis (cPCA), construct its free energy landscape, thus obtaining a detailed weighted discrimination between the helical and nonhelical subensembles. The cPCA state discrimination, together with a Markov model built from it, allowed us to estimate the free energy of unfolding (-0.57 kJ/mol) and the relaxation time (∼0.435 µs) at 298.15 K, which are in excellent agreement with the experimentally reported values (-0.22 kJ/mol and 0.42 µs, Serrano, A. L.; Tucker, M. J.; Gai, F. J. Phys. Chem. B, 2011, 115, 7472-7478.). Additionally, we present simulations conducted using two enhanced sampling methods: replica-exchange molecular dynamics (REMD) and bias-exchange metadynamics (BE-MetaD). We compare the free energy landscape obtained by these two methods with the results from MD simulations and discuss the sampling and computational gains achieved. Overall, the results obtained attest to the suitability of modern simulation methods to explore the conformational behavior of peptide systems with a high level of realism.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA