Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
BMC Genomics ; 20(1): 974, 2019 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-31830909

RESUMEN

BACKGROUND: Bud dormancy is a crucial stage in perennial trees and allows survival over winter to ensure optimal flowering and fruit production. Recent work highlighted physiological and molecular events occurring during bud dormancy in trees. However, they usually examined bud development or bud dormancy in isolation. In this work, we aimed to further explore the global transcriptional changes happening throughout bud development and dormancy onset, progression and release. RESULTS: Using next-generation sequencing and modelling, we conducted an in-depth transcriptomic analysis for all stages of flower buds in several sweet cherry (Prunus avium L.) cultivars that are characterized for their contrasted dates of dormancy release. We find that buds in organogenesis, paradormancy, endodormancy and ecodormancy stages are defined by the expression of genes involved in specific pathways, and these are conserved between different sweet cherry cultivars. In particular, we found that DORMANCY ASSOCIATED MADS-box (DAM), floral identity and organogenesis genes are up-regulated during the pre-dormancy stages while endodormancy is characterized by a complex array of signalling pathways, including cold response genes, ABA and oxidation-reduction processes. After dormancy release, genes associated with global cell activity, division and differentiation are activated during ecodormancy and growth resumption. We then went a step beyond the global transcriptomic analysis and we developed a model based on the transcriptional profiles of just seven genes to accurately predict the main bud dormancy stages. CONCLUSIONS: Overall, this study has allowed us to better understand the transcriptional changes occurring throughout the different phases of flower bud development, from bud formation in the summer to flowering in the following spring. Our work sets the stage for the development of fast and cost effective diagnostic tools to molecularly define the dormancy stages. Such integrative approaches will therefore be extremely useful for a better comprehension of complex phenological processes in many species.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Latencia en las Plantas , Proteínas de Plantas/genética , Prunus avium/fisiología , Flores/genética , Flores/fisiología , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Secuenciación de Nucleótidos de Alto Rendimiento , Modelos Genéticos , Prunus avium/genética
2.
Int J Biometeorol ; 63(2): 183-192, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30460433

RESUMEN

Evaluation of chilling requirements of cultivars of temperate fruit trees provides key information to assess regional suitability, according to winter chill, for both industry expansion and ongoing profitability as climate change progresses. Traditional methods for calculating chilling requirements use climate-controlled chambers and define chilling requirements (CR) using a fixed bud burst percentage, usually close to 50% (CR-50%). However, this CR-50% definition may estimate chilling requirements that lead to flowering percentages that are lower than required for orchards to be commercially viable. We used sweet cherry to analyse the traditional method for calculating chilling requirements (CR-50%) and compared the results with a more restrictive method, where the chilling requirement was defined by a 90% bud break level (CRm-90%). For sweet cherry, this higher requirement of flowering success (90% as opposed to 50%) better represents grower production needs as a greater number of flowers leads to greater potential yield. To investigate the future risk of insufficient chill based on alternate calculations of the chilling requirement, climate projections of winter chill suitability across Europe were calculated using CR-50% and CRm-90%. Regional suitability across the landscape was highly dependent on the method used to define chilling requirements, and differences were found for both cold and mild winter areas. Our results suggest that bud break percentage levels used in the assessment of chilling requirements for sweet cherry influence production risks of current and future production areas. The use of traditional methods to determine chilling requirements can result in an underestimation of productivity chilling requirements for tree crops like sweet cherry which rely on a high conversion of flowers to mature fruit to obtain profitable yields. This underestimation may have negative consequences for the fruit industry as climate change advances with climate risk underestimated.


Asunto(s)
Prunus avium/fisiología , Temperatura , Cambio Climático , Flores/fisiología , Estaciones del Año
3.
BMC Genomics ; 18(1): 404, 2017 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-28583082

RESUMEN

BACKGROUND: Peach (Prunus persica (L.) Batsch) is a major temperate fruit crop with an intense breeding activity. Breeding is facilitated by knowledge of the inheritance of the key traits that are often of a quantitative nature. QTLs have traditionally been studied using the phenotype of a single progeny (usually a full-sib progeny) and the correlation with a set of markers covering its genome. This approach has allowed the identification of various genes and QTLs but is limited by the small numbers of individuals used and by the narrow transect of the variability analyzed. In this article we propose the use of a multi-progeny mapping strategy that used pedigree information and Bayesian approaches that supports a more precise and complete survey of the available genetic variability. RESULTS: Seven key agronomic characters (data from 1 to 3 years) were analyzed in 18 progenies from crosses between occidental commercial genotypes and various exotic lines including accessions of other Prunus species. A total of 1467 plants from these progenies were genotyped with a 9 k SNP array. Forty-seven QTLs were identified, 22 coinciding with major genes and QTLs that have been consistently found in the same populations when studied individually and 25 were new. A substantial part of the QTLs observed (47%) would not have been detected in crosses between only commercial materials, showing the high value of exotic lines as a source of novel alleles for the commercial gene pool. Our strategy also provided estimations on the narrow sense heritability of each character, and the estimation of the QTL genotypes of each parent for the different QTLs and their breeding value. CONCLUSIONS: The integrated strategy used provides a broader and more accurate picture of the variability available for peach breeding with the identification of many new QTLs, information on the sources of the alleles of interest and the breeding values of the potential donors of such valuable alleles. These results are first-hand information for breeders and a step forward towards the implementation of DNA-informed strategies to facilitate selection of new cultivars with improved productivity and quality.


Asunto(s)
Cruzamiento , Prunus persica/genética , Sitios de Carácter Cuantitativo/genética , Flores/crecimiento & desarrollo , Frutas/crecimiento & desarrollo , Genotipo , Polimorfismo de Nucleótido Simple , Probabilidad , Prunus persica/crecimiento & desarrollo , Solubilidad
4.
BMC Plant Biol ; 16: 49, 2016 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-26912051

RESUMEN

BACKGROUND: Depiction of the genetic diversity, linkage disequilibrium (LD) and population structure is essential for the efficient organization and exploitation of genetic resources. The objectives of this study were to (i) to evaluate the genetic diversity and to detect the patterns of LD, (ii) to estimate the levels of population structure and (iii) to identify a 'core collection' suitable for association genetic studies in sweet cherry. RESULTS: A total of 210 genotypes including modern cultivars and landraces from 16 countries were genotyped using the RosBREED cherry 6 K SNP array v1. Two groups, mainly bred cultivars and landraces, respectively, were first detected using STRUCTURE software and confirmed by Principal Coordinate Analysis (PCoA). Further analyses identified nine subgroups using STRUCTURE and Discriminant Analysis of Principal Components (DAPC). Several sub-groups correspond to different eco-geographic regions of landraces distribution. Linkage disequilibrium was evaluated showing lower values than in peach, the reference Prunus species. A 'core collection' containing 156 accessions was selected using the maximum length sub tree method. CONCLUSION: The present study constitutes the first population genetics analysis in cultivated sweet cherry using a medium-density SNP (single nucleotide polymorphism) marker array. We provided estimations of linkage disequilibrium, genetic structure and the definition of a first INRA's Sweet Cherry core collection useful for breeding programs, germplasm management and association genetics studies.


Asunto(s)
Prunus avium/genética , Cruzamiento , Variación Genética , Desequilibrio de Ligamiento
5.
New Phytol ; 202(2): 703-715, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24417538

RESUMEN

The present study investigated the genetic determinism of flowering date (FD), dissected into chilling (CR) and heat (HR) requirements. Elucidation of the genetic determinism of flowering traits is crucial to anticipate the increasing of ecological misalignment of adaptative traits with novel climate conditions in most temperate-fruit species. CR and HR were evaluated over 3 yr and FD over 5 yr in an intraspecific sweet cherry (Prunus avium) F1 progeny, and FD over 6 yr in a different F1 progeny. One quantitative trait locus (QTL) with major effect and high stability between years of evaluation was detected for CR and FD in the same region of linkage group (LG) 4. For HR, no stable QTL was detected. Candidate genes underlying the major QTL on LG4 were investigated and key genes were identified for CR and FD. Phenotypic dissection of FD and year repetitions allowed us to identify CR as the high heritable component of FD and a high genotype × environment interaction for HR. QTLs for CR reported in this study are the first described in this species. Our results provide a foundation for the identification of genes involved in CR and FD in sweet cherry which could be used to develop ideotypes adapted to future climatic conditions.


Asunto(s)
Cambio Climático , Flores/crecimiento & desarrollo , Genes de Plantas , Genotipo , Prunus/genética , Sitios de Carácter Cuantitativo , Temperatura , Fenotipo , Prunus/crecimiento & desarrollo
6.
Hortic Res ; 8(1): 136, 2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-34059661

RESUMEN

Rain-induced fruit cracking is a major problem in sweet cherry cultivation. Basic research has been conducted to disentangle the physiological and mechanistic bases of this complex phenomenon, whereas genetic studies have lagged behind. The objective of this work was to disentangle the genetic determinism of rain-induced fruit cracking. We hypothesized that a large genetic variation would be revealed, by visual field observations conducted on mapping populations derived from well-contrasted cultivars for cracking tolerance. Three populations were evaluated over 7-8 years by estimating the proportion of cracked fruits for each genotype at maturity, at three different areas of the sweet cherry fruit: pistillar end, stem end, and fruit side. An original approach was adopted to integrate, within simple linear models, covariates potentially related to cracking, such as rainfall accumulation before harvest, fruit weight, and firmness. We found the first stable quantitative trait loci (QTLs) for cherry fruit cracking, explaining percentages of phenotypic variance above 20%, for each of these three types of cracking tolerance, in different linkage groups, confirming the high complexity of this trait. For these and other QTLs, further analyses suggested the existence of at least two-linked QTLs in each linkage group, some of which showed confidence intervals close to 5 cM. These promising results open the possibility of developing marker-assisted selection strategies to select cracking-tolerant sweet cherry cultivars. Further studies are needed to confirm the stability of the reported QTLs over different genetic backgrounds and environments and to narrow down the QTL confidence intervals, allowing the exploration of underlying candidate genes.

7.
Plant Physiol Biochem ; 168: 93-104, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34627026

RESUMEN

Cell wall composition was studied during the development of apple cultivars (14-161/182 days after full bloom, DAA) maintaining firm fruit (Ariane) or evolving to mealy texture (Rome Beauty) when ripe and in sweet cherry cultivars (21/26-70/75 DAA) to assess their skin-cracking susceptibility (tolerant Regina and susceptible Garnet). Pectin sugar composition and hemicellulose fine structure assessed by enzymatic degradation coupled to MALDI-TOF MS analysis were shown to vary markedly between apples and cherries during fruit development. Apple showed decreasing rhamnogalacturonan I (RGI) and increasing homogalacturonan (HG) pectic domain proportions from young to mature fruit. Hemicellulose-cellulose (HC) sugars peaked at the beginning of fruit expansion corresponding to the maximum cell wall content of glucose and mannose. In contrast, HG peaked very early in the cell wall of young developing cherries and remained constant until ripening whereas RGI content continuously increased. HC content decreased very early and remained low in cell walls. Only the low content of mannose and to a lesser extent fucose increased and then slowly decreased from the beginning of the fruit expansion phase. Hemicellulose structural profiling showed strong varietal differences between cherry cultivars. Both apples and cherries demonstrated a peak of glucomannan oligomers produced by ß-glucanase hydrolysis of the cell wall at the onset of cell expansion. The different glucomannan contents and related oligomers released from cell walls are discussed with regard to the contribution of glucomannan to cell wall mechanical properties. These hemicellulose features may prove to be early markers of apple mealiness and cherry skin-cracking susceptibility.


Asunto(s)
Malus , Prunus avium , Rosaceae , Pared Celular , Evolución Química , Frutas
8.
Front Plant Sci ; 12: 803878, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35185955

RESUMEN

Temperate deciduous fruit trees survive winter temperatures by entering a dormant phase in their aerial meristematic organs. Release from bud dormancy occurs after chill requirements (CR) have been satisfied, whereas bud burst/flowering follows heat requirement (HR) fulfillment. The physiological basis behind these metrics remains elusive. In this study, we are presenting the first multidisciplinary dormancy progression analysis in northern Patagonia, linking (1) forcing/field phenology, (2) bud anatomical development, and (3) soluble sugar (sucrose, glucose, and fructose) dynamics in Juglans regia L. CR and HR were determined for 'Chandler' and 'Franquette,' two walnut cultivars with markedly different CR, in artificial chill/forced heat trials (three seasons) and in-field chill/forced heat tests (five seasons) using excised twigs either with or without apical buds (non-decapitated and decapitated). The soluble sugar dynamics of 'Chandler' (high-performance liquid chromatography) and the anatomical changes of the buds (light microscopy) of the two cultivars were analyzed during endo-ecodormancy progression in one and two seasons, respectively. The CR defined by artificial chill tests proved to be an overestimation compared to the field determinations. Moreover, HR was the main driver in the phenology dynamics, as expected for a high-chill region. 'Chandler' showed an average of 10.3 field chill portions (CP) and 2,163 Growing Degree Hours (GDH°C) less than 'Franquette' for dormancy release and bud burst, respectively. These results were consistent with the transition of the shoot apex from the vegetative to the reproductive phase and the soluble sugar profile. The decrease in sucrose between 15 and 30 days after CR fulfillment could be a reliable biological marker for endodormancy release in walnut, while the increase in fructose and glucose is likely an osmolyte and cellulosic carbon source in pre-sprouting. In addition, we discuss the effect of paradormancy thanks to our apical bud experiment (with or without). Our results improve the current understanding of endo-ecodormancy progression in walnut and provide insightful results for walnut production (i.e., cultivation practices such as pruning) as well as for further application in dormancy modeling, to infer the ideotypes that should be bred for future climate conditions.

9.
Hortic Res ; 6: 6, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30603092

RESUMEN

The timing of fruit maturity is an important trait in sweet cherry production and breeding. Phenotypic variation for phenology of fruit maturity in sweet cherry appears to be under strong genetic control, but that control might be complicated by phenotypic instability across environments. Although such genotype-by-environment interaction (G × E) is a common phenomenon in crop plants, knowledge about it is lacking for fruit maturity timing and other sweet cherry traits. In this study, 1673 genome-wide SNP markers were used to estimate genomic relationships among 597 weakly pedigree-connected individuals evaluated over two seasons at three locations in Europe and one location in the USA, thus sampling eight 'environments'. The combined dataset enabled a single meta-analysis to investigate the environmental stability of genomic predictions. Linkage disequilibrium among marker loci declined rapidly with physical distance, and ordination of the relationship matrix suggested no strong structure among germplasm. The most parsimonious G × E model allowed heterogeneous genetic variance and pairwise covariances among environments. Narrow-sense genomic heritability was very high (0.60-0.83), as was accuracy of predicted breeding values (>0.62). Average correlation of additive effects among environments was high (0.96) and breeding values were highly correlated across locations. Results indicated that genomic models can be used in cherry to accurately predict date of fruit maturity for untested individuals in new environments. Limited G × E for this trait indicated that phenotypes of individuals will be stable across similar environments. Equivalent analyses for other sweet cherry traits, for which multiple years of data are commonly available among breeders and cultivar testers, would be informative for predicting performance of elite selections and cultivars in new environments.

10.
Sci Data ; 3: 160108, 2016 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-27922629

RESUMEN

Professional and scientific networks built around the production of sweet cherry (Prunus avium L.) led to the collection of phenology data for a wide range of cultivars grown in experimental sites characterized by highly contrasted climatic conditions. We present a dataset of flowering and maturity dates, recorded each year for one tree when available, or the average of several trees for each cultivar, over a period of 37 years (1978-2015). Such a dataset is extremely valuable for characterizing the phenological response to climate change, and the plasticity of the different cultivars' behaviour under different environmental conditions. In addition, this dataset will support the development of predictive models for sweet cherry phenology exploitable at the continental scale, and will help anticipate breeding strategies in order to maintain and improve sweet cherry production in Europe.


Asunto(s)
Cambio Climático , Producción de Cultivos , Flores/crecimiento & desarrollo , Jardinería , Prunus avium/crecimiento & desarrollo , Cruzamiento , Europa (Continente) , Modelos Biológicos
11.
PLoS One ; 10(11): e0143250, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26587668

RESUMEN

The timing of flowering in perennial plants is crucial for their survival in temperate climates and is regulated by the duration of bud dormancy. Bud dormancy release and bud break depend on the perception of cumulative chilling during endodormancy and heat during the bud development. The objectives of this work were to identify candidate genes involved in dormancy and flowering processes in sweet cherry, their mapping in two mapping progenies 'Regina' × 'Garnet' and 'Regina' × 'Lapins', and to select those candidate genes which co-localized with quantitative trait loci (QTLs) associated with temperature requirements for bud dormancy release and flowering. Based on available data on flowering processes in various species, a list of 79 candidate genes was established. The peach and sweet cherry orthologs were identified and primers were designed to amplify sweet cherry candidate gene fragments. Based on the amplified sequences of the three parents of the mapping progenies, SNPs segregations in the progenies were identified. Thirty five candidate genes were genetically mapped in at least one of the two progenies and all were in silico mapped. Co-localization between candidate genes and QTLs associated with temperature requirements and flowering date were identified for the first time in sweet cherry. The allelic composition of the candidate genes located in the major QTL for heat requirements and flowering date located on linkage group 4 have a significant effect on these two traits indicating their potential use for breeding programs in sweet cherry to select new varieties adapted to putative future climatic conditions.


Asunto(s)
Mapeo Cromosómico , Flores/fisiología , Genes de Plantas , Prunus avium/genética , Regiones no Traducidas 5' , Arabidopsis/genética , Cruzamientos Genéticos , Cartilla de ADN , Exones , Ligamiento Genético , Genotipo , Fenotipo , Polimorfismo de Nucleótido Simple , Prunus avium/fisiología , Sitios de Carácter Cuantitativo , Reproducción/genética , Temperatura
12.
PLoS One ; 8(1): e54743, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23382953

RESUMEN

Despite the agronomical importance and high synteny with other Prunus species, breeding improvements for cherry have been slow compared to other temperate fruits, such as apple or peach. However, the recent release of the peach genome v1.0 by the International Peach Genome Initiative and the sequencing of cherry accessions to identify Single Nucleotide Polymorphisms (SNPs) provide an excellent basis for the advancement of cherry genetic and genomic studies. The availability of dense genetic linkage maps in phenotyped segregating progenies would be a valuable tool for breeders and geneticists. Using two sweet cherry (Prunus avium L.) intra-specific progenies derived from crosses between 'Black Tartarian' × 'Kordia' (BT×K) and 'Regina' × 'Lapins'(R×L), high-density genetic maps of the four parental lines and the two segregating populations were constructed. For BT×K and R×L, 89 and 121 F(1) plants were used for linkage mapping, respectively. A total of 5,696 SNP markers were tested in each progeny. As a result of these analyses, 723 and 687 markers were mapped into eight linkage groups (LGs) in BT×K and R×L, respectively. The resulting maps spanned 752.9 and 639.9 cM with an average distance of 1.1 and 0.9 cM between adjacent markers in BT×K and R×L, respectively. The maps displayed high synteny and co-linearity between each other, with the Prunus bin map, and with the peach genome v1.0 for all eight LGs (LG1-LG8). These maps provide a useful tool for investigating traits of interest in sweet cherry and represent a qualitative advance in the understanding of the cherry genome and its synteny with other members of the Rosaceae family.


Asunto(s)
Mapeo Cromosómico , Ligamiento Genético , Prunus/genética , Alelos , Frecuencia de los Genes , Marcadores Genéticos , Genotipo , Fenotipo , Polimorfismo de Nucleótido Simple , Prunus/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA