Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Cell Mol Life Sci ; 80(11): 340, 2023 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-37898985

RESUMEN

Increasing evidence implicates astrocytic dysfunction in Alzheimer's disease (AD), a neurodegenerative disorder characterised by progressive cognitive loss. The accumulation of amyloid-ß (Aß) plaques is a histopathological hallmark of AD and associated with increased astrocyte reactivity. In APP/PS1 mice modelling established AD (9 months), we now show an altered astrocytic morphology and enhanced activity of astrocytic hemichannels, mainly composed by connexin 43 (Cx43). Hemichannel activity in hippocampal astrocytes is also increased in two models of early AD: (1) mice with intracerebroventricular (icv) administration of Aß1-42, and (2) hippocampal slices superfused with Aß1-42 peptides. In hippocampal gliosomes of APP/PS1 mice, Cx43 levels were increased, whereas mice administered icv with Aß1-42 only displayed increased Cx43 phosphorylation levels. This suggests that hemichannel activity might be differentially modulated throughout AD progression. Additionally, we tested if adenosine A2A receptor (A2AR) blockade reversed alterations of astrocytic hemichannel activity and found that the pharmacological blockade or genetic silencing (global and astrocytic) of A2AR prevented Aß-induced hemichannel dysregulation in hippocampal slices, although A2AR genetic silencing increased the activity of astroglial hemichannels in control conditions. In primary cultures of astrocytes, A2AR-related protective effect was shown to occur through a protein kinase C (PKC) pathway. Our results indicate that the dysfunction of hemichannel activity in hippocampal astrocytes is an early event in AD, which is modulated by A2AR.


Asunto(s)
Enfermedad de Alzheimer , Ratones , Animales , Enfermedad de Alzheimer/metabolismo , Astrocitos/metabolismo , Conexina 43/genética , Conexina 43/metabolismo , Adenosina/metabolismo , Péptidos beta-Amiloides/metabolismo , Modelos Animales de Enfermedad
2.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38732120

RESUMEN

Adenosine A2A receptor (A2AR) antagonists are the leading nondopaminergic therapy to manage Parkinson's disease (PD) since they afford both motor benefits and neuroprotection. PD begins with a synaptic dysfunction and damage in the striatum evolving to an overt neuronal damage of dopaminergic neurons in the substantia nigra. We tested if A2AR antagonists are equally effective in controlling these two degenerative processes. We used a slow intracerebroventricular infusion of the toxin MPP+ in male rats for 15 days, which caused an initial loss of synaptic markers in the striatum within 10 days, followed by a neuronal loss in the substantia nigra within 30 days. Interestingly, the initial loss of striatal nerve terminals involved a loss of both dopaminergic and glutamatergic synaptic markers, while GABAergic markers were preserved. The daily administration of the A2AR antagonist SCH58261 (0.1 mg/kg, i.p.) in the first 10 days after MPP+ infusion markedly attenuated both the initial loss of striatal synaptic markers and the subsequent loss of nigra dopaminergic neurons. Strikingly, the administration of SCH58261 (0.1 mg/kg, i.p. for 10 days) starting 20 days after MPP+ infusion was less efficacious to attenuate the loss of nigra dopaminergic neurons. This prominent A2AR-mediated control of synaptotoxicity was directly confirmed by showing that the MPTP-induced dysfunction (MTT assay) and damage (lactate dehydrogenase release assay) of striatal synaptosomes were prevented by 50 nM SCH58261. This suggests that A2AR antagonists may be more effective to counteract the onset rather than the evolution of PD pathology.


Asunto(s)
Antagonistas del Receptor de Adenosina A2 , Cuerpo Estriado , Enfermedad de Parkinson , Receptor de Adenosina A2A , Animales , Ratas , Antagonistas del Receptor de Adenosina A2/farmacología , Antagonistas del Receptor de Adenosina A2/uso terapéutico , Cuerpo Estriado/metabolismo , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/patología , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Pirimidinas/farmacología , Pirimidinas/uso terapéutico , Ratas Sprague-Dawley , Receptor de Adenosina A2A/metabolismo , Sustancia Negra/efectos de los fármacos , Sustancia Negra/metabolismo , Sustancia Negra/patología , Triazoles/farmacología
3.
Glia ; 71(9): 2137-2153, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37183905

RESUMEN

Astrocytes are wired to bidirectionally communicate with neurons namely with synapses, thus shaping synaptic plasticity, which in the hippocampus is considered to underlie learning and memory. Adenosine A2A receptors (A2A R) are a potential candidate to modulate this bidirectional communication, since A2A R regulate synaptic plasticity and memory and also control key astrocytic functions. Nonetheless, little is known about the role of astrocytic A2A R in synaptic plasticity and hippocampal-dependent memory. Here, we investigated the impact of genetic silencing astrocytic A2A R on hippocampal synaptic plasticity and memory of adult mice. The genetic A2A R silencing in astrocytes was accomplished by a bilateral injection into the CA1 hippocampal area of a viral construct (AAV5-GFAP-GFP-Cre) that inactivate A2A R expression in astrocytes of male adult mice carrying "floxed" A2A R gene, as confirmed by A2A R binding assays. Astrocytic A2A R silencing alters astrocytic morphology, typified by an increment of astrocytic arbor complexity, and led to deficits in spatial reference memory and compromised hippocampal synaptic plasticity, typified by a reduction of LTP magnitude and a shift of synaptic long-term depression (LTD) toward LTP. These data indicate that astrocytic A2A R control astrocytic morphology and influence hippocampal synaptic plasticity and memory of adult mice in a manner different from neuronal A2A R.


Asunto(s)
Astrocitos , Hipocampo , Ratones , Masculino , Animales , Astrocitos/metabolismo , Hipocampo/metabolismo , Plasticidad Neuronal/genética , Sinapsis/metabolismo , Memoria Espacial , Ratones Endogámicos C57BL , Potenciación a Largo Plazo/genética
4.
Int J Mol Sci ; 24(8)2023 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-37108131

RESUMEN

Alzheimer's disease (AD), which predominantly affects women, involves at its onset a metabolic deregulation associated with a synaptic failure. Here, we performed a behavioral, neurophysiological and neurochemical characterization of 9-month-old female APPswe/PS1dE9 (APP/PS1) mice as a model of early AD. These animals showed learning and memory deficits in the Morris water maze, increased thigmotaxis and anxiety-like behavior and showed signs of fear generalization. Long-term potentiation (LTP) was decreased in the prefrontal cortex (PFC), but not in the CA1 hippocampus or amygdala. This was associated with a decreased density of sirtuin-1 in cerebrocortical synaptosomes and a decreased density of sirtuin-1 and sestrin-2 in total cerebrocortical extracts, without alterations of sirtuin-3 levels or of synaptic markers (syntaxin, synaptophysin, SNAP25, PSD95). However, activation of sirtuin-1 did not affect or recover PFC-LTP deficit in APP/PS1 female mice; instead, inhibition of sirtuin-1 increased PFC-LTP magnitude. It is concluded that mood and memory dysfunction in 9-month-old female APP/PS1 mice is associated with a parallel decrease in synaptic plasticity and in synaptic sirtuin-1 levels in the prefrontal cortex, although sirtiun1 activation failed to restore abnormal cortical plasticity.


Asunto(s)
Enfermedad de Alzheimer , Corteza Prefrontal , Sirtuina 1 , Animales , Femenino , Ratones , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Modelos Animales de Enfermedad , Regulación hacia Abajo , Hipocampo/metabolismo , Potenciación a Largo Plazo/fisiología , Aprendizaje por Laberinto , Ratones Transgénicos , Corteza Prefrontal/metabolismo , Sirtuina 1/genética , Sirtuina 1/metabolismo
5.
J Neurochem ; 160(5): 556-567, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35043392

RESUMEN

Amyloid-ß peptides (Aß) accumulate in the brain since early Alzheimer's disease (AD) and dysregulate hippocampal synaptic plasticity, the neurophysiological basis of memory. Although the relationship between long-term potentiation (LTP) and memory processes is well established, there is also evidence that long-term depression (LTD) may be crucial for learning and memory. Alterations in synaptic plasticity, namely in LTP, can be due to communication failures between astrocytes and neurons; however, little is known about astrocytes' ability to control hippocampal LTD, particularly in AD-like conditions. We now aimed to test the involvement of astrocytes in changes of hippocampal LTP and LTD triggered by Aß1-42 , taking advantage of L-α-aminoadipate (L-AA), a gliotoxin that blunts astrocytic function. The effects of Aß1-42 exposure were tested in two different experimental paradigms: ex vivo (hippocampal slices superfusion) and in vivo (intracerebroventricular injection), which were previously validated to impair memory and hippocampal synaptic plasticity, two features of early AD. Blunting astrocytic function with L-AA reduced LTP and LTD amplitude in hippocampal slices from control mice, but the effect on LTD was less evident, suggesting that astrocytes have a greater influence on LTP than on LTD under non-pathological conditions. However, under AD conditions, blunting astrocytes did not consistently alter the reduction of LTP magnitude, but reverted the LTD-to-LTP shift caused by both ex vivo and in vivo Aß1-42 exposure. This shows that astrocytes were responsible for the hippocampal LTD-to-LTP shift observed in early AD conditions, reinforcing the interest of strategies targeting astrocytes to restore memory and synaptic plasticity deficits present in early AD.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Animales , Astrocitos/metabolismo , Modelos Animales de Enfermedad , Hipocampo , Potenciación a Largo Plazo/fisiología , Ratones , Plasticidad Neuronal/fisiología , Fragmentos de Péptidos/farmacología
6.
FASEB J ; 35(8): e21726, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34196433

RESUMEN

Increasing evidence shows that astrocytes, by releasing and uptaking neuroactive molecules, regulate synaptic plasticity, considered the neurophysiological basis of memory. This study investigated the impact of l-α-aminoadipate (l-AA) on astrocytes which sense and respond to stimuli at the synaptic level and modulate hippocampal long-term potentiation (LTP) and memory. l-AA selectivity toward astrocytes was proposed in the early 70's and further tested in different systems. Although it has been used for impairing the astrocytic function, its effects appear to be variable in different brain regions. To test the effects of l-AA in the hippocampus of male C57Bl/6 mice we performed two different treatments (ex vivo and in vivo) and took advantage of other compounds that were reported to affect astrocytes. l-AA superfusion did not affect the basal synaptic transmission but decreased LTP magnitude. Likewise, trifluoroacetate and dihydrokainate decreased LTP magnitude and occluded the effect of l-AA on synaptic plasticity, confirming l-AA selectivity. l-AA superfusion altered astrocyte morphology, increasing the length and complexity of their processes. In vivo, l-AA intracerebroventricular injection not only reduced the astrocytic markers but also LTP magnitude and impaired hippocampal-dependent memory in mice. Interestingly, d-serine administration recovered hippocampal LTP reduction triggered by l-AA (2 h exposure in hippocampal slices), whereas in mice injected with l-AA, the superfusion of d-serine did not fully rescue LTP magnitude. Overall, these data show that both l-AA treatments affect astrocytes differently, astrocytic activation or loss, with similar negative outcomes on hippocampal LTP, implying that opposite astrocytic adaptive alterations are equally detrimental for synaptic plasticity.


Asunto(s)
Ácido 2-Aminoadípico/toxicidad , Astrocitos/efectos de los fármacos , Hipocampo/efectos de los fármacos , Hipocampo/fisiopatología , Ácido 2-Aminoadípico/administración & dosificación , Ácido 2-Aminoadípico/antagonistas & inhibidores , Adenosina Trifosfato/metabolismo , Animales , Astrocitos/patología , Astrocitos/fisiología , Células Cultivadas , Antagonistas de Aminoácidos Excitadores/administración & dosificación , Antagonistas de Aminoácidos Excitadores/toxicidad , Proteína Ácida Fibrilar de la Glía/metabolismo , Ácido Glutámico/metabolismo , Hipocampo/patología , Técnicas In Vitro , Inyecciones Intraventriculares , Potenciación a Largo Plazo/efectos de los fármacos , Potenciación a Largo Plazo/fisiología , Masculino , Memoria/efectos de los fármacos , Memoria/fisiología , Ratones , Ratones Endogámicos C57BL , Plasticidad Neuronal/efectos de los fármacos , Plasticidad Neuronal/fisiología , Serina/administración & dosificación , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología
7.
Purinergic Signal ; 18(2): 199-204, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35476241

RESUMEN

Anxiety involves abnormal glucocorticoid signalling and altered glia-neuron communication in brain regions processing emotional responses. Adenosine A2A receptor (A2AR) blockade ameliorates mood and memory impairments by preventing synaptic dysfunction and astrogliosis. Since the glucocorticoid dexamethasone (DEX) can mimic early life-stress conditions, leading to anxiety-like behaviours, we now tested if A2AR blockade prevents alterations in the morphology and function of astrocytes exposed to DEX. Cultured astrocytes exposed to DEX exhibited an up-regulation of astrocytic markers (GFAP, connexin-43 and glutamine synthetase), as well as of A2AR. Moreover, DEX enhanced ATP and glutamate release and increased basal astrocytic Ca2+ levels. The selective A2AR antagonist SCH58261 prevented DEX-induced alterations in ATP release and basal Ca2+ levels but did not affect DEX-induced alteration of glutamate release and astrocytic markers. These findings suggest that alterations in astrocytes function, which might contribute to abnormal glucocorticoid brain signalling, are controlled by A2AR, and therefore, reinforce the relevance of A2AR as a potential therapeutic target to manage mood disorders.


Asunto(s)
Adenosina , Astrocitos , Adenosina/farmacología , Adenosina Trifosfato , Dexametasona/farmacología , Glucocorticoides , Ácido Glutámico , Receptor de Adenosina A2A
8.
Int J Mol Sci ; 23(21)2022 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-36361618

RESUMEN

Adenosine A2A receptors (A2AR) control fear memory and the underlying processes of synaptic plasticity in the amygdala. In other brain regions, A2AR activation is ensured by ATP-derived extracellular adenosine formed by ecto-5'-nucleotidase or CD73. We now tested whether CD73 is also responsible to provide for the activation of A2AR in controlling fear memory and amygdala long-term potentiation (LTP). The bilateral intracerebroventricular injection of the CD73 inhibitor αß-methylene ADP (AOPCP, 1 nmol/ventricle/day) phenocopied the effect of the A2AR blockade by decreasing the expression of fear memory, an effect disappearing in CD73-knockout (KO) mice and in forebrain neuronal A2AR-KO mice. In the presence of PPADS (20 µM) to eliminate any modification of ATP/ADP-mediated P2 receptor effects, both AOPCP (100 µM) and the A2AR antagonist, SCH58261 (50 nM), decreased LTP magnitude in synapses of projection from the external capsula into the lateral amygdala, an effect eliminated in slices from both forebrain neuronal A2AR-KO mice and CD73-KO mice. These data indicate a key role of CD73 in the process of A2AR-mediated control of fear memory and underlying synaptic plasticity processes in the amygdala, paving the way to envisage CD73 as a new therapeutic target to interfere with abnormal fear-like emotional processing.


Asunto(s)
5'-Nucleotidasa , Receptor de Adenosina A2A , Ratones , Animales , 5'-Nucleotidasa/genética , 5'-Nucleotidasa/metabolismo , Receptor de Adenosina A2A/genética , Receptor de Adenosina A2A/metabolismo , Adenosina/metabolismo , Ratones Endogámicos C57BL , Amígdala del Cerebelo/metabolismo , Ratones Noqueados , Miedo/fisiología , Adenosina Difosfato , Adenosina Trifosfato/metabolismo
9.
Neurobiol Dis ; 157: 105441, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34224862

RESUMEN

Extracellular ATP is a danger signal to the brain and contributes to neurodegeneration in animal models of Alzheimer's disease through its extracellular catabolism by CD73 to generate adenosine, bolstering the activation of adenosine A2A receptors (A2AR). Convulsive activity leads to increased ATP release, with the resulting morphological alterations being eliminated by A2AR blockade. However, it is not known if upon convulsions there is a CD73-mediated coupling between ATP release and A2AR overactivation, causing neurodegeneration. We now show that kainate-induced convulsions trigger a parallel increase of ATP release and of CD73 and A2AR densities in synapses and astrocytes of the mouse hippocampus. Notably, the genetic deletion of CD73 attenuates neuronal degeneration but has no impact on astrocytic modifications in the hippocampus upon kainate-induced convulsions. Furthermore, kainate-induced convulsions cause a parallel deterioration of hippocampal long-term potentiation (LTP) and hippocampal-dependent memory performance, which is eliminated by knocking out CD73. This demonstrates the key role of the ATP release/CD73/A2AR pathway to selectively control synaptic dysfunction and neurodegeneration following an acute brain insult, paving the way to consider CD73 as a new therapeutic target to prevent neuronal damage upon acute brain damage.


Asunto(s)
5'-Nucleotidasa/metabolismo , Adenosina Trifosfato/metabolismo , Astrocitos/metabolismo , Hipocampo/metabolismo , Neuronas/metabolismo , Receptor de Adenosina A2A/metabolismo , Convulsiones/metabolismo , Sinapsis/metabolismo , 5'-Nucleotidasa/genética , Animales , Astrocitos/efectos de los fármacos , Agonistas de Aminoácidos Excitadores/toxicidad , Hipocampo/efectos de los fármacos , Ácido Kaínico/toxicidad , Potenciación a Largo Plazo/efectos de los fármacos , Potenciación a Largo Plazo/fisiología , Memoria/efectos de los fármacos , Memoria/fisiología , Ratones , Ratones Noqueados , Enfermedades Neurodegenerativas/metabolismo , Neuronas/efectos de los fármacos , Neuronas/patología , Convulsiones/inducido químicamente , Sinapsis/efectos de los fármacos
10.
Mol Psychiatry ; 25(8): 1876-1900, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-29950682

RESUMEN

Synaptic dysfunction plays a central role in Alzheimer's disease (AD), since it drives the cognitive decline. An association between a polymorphism of the adenosine A2A receptor (A2AR) encoding gene-ADORA2A, and hippocampal volume in AD patients was recently described. In this study, we explore the synaptic function of A2AR in age-related conditions. We report, for the first time, a significant overexpression of A2AR in hippocampal neurons of aged humans, which is aggravated in AD patients. A similar profile of A2AR overexpression in rats was sufficient to drive age-like memory impairments in young animals and to uncover a hippocampal LTD-to-LTP shift. This was accompanied by increased NMDA receptor gating, dependent on mGluR5 and linked to enhanced Ca2+ influx. We confirmed the same plasticity shift in memory-impaired aged rats and APP/PS1 mice modeling AD, which was rescued upon A2AR blockade. This A2AR/mGluR5/NMDAR interaction might prove a suitable alternative for regulating aberrant mGluR5/NMDAR signaling in AD without disrupting their constitutive activity.


Asunto(s)
Envejecimiento/metabolismo , Depresión Sináptica a Largo Plazo , Neuronas/metabolismo , Receptor de Adenosina A2A/metabolismo , Receptor del Glutamato Metabotropico 5/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Adenosina/metabolismo , Enfermedad de Alzheimer/metabolismo , Animales , Células Cultivadas , Hipocampo/metabolismo , Humanos , Ratones , Ratas , Ratas Sprague-Dawley , Memoria Espacial
11.
Purinergic Signal ; 17(3): 393-397, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34216353

RESUMEN

Ecto-5'-nucleotidase or CD73 is the main source of extracellular adenosine involved in the activation of adenosine A2A receptors, responsible for the ergogenic effects of caffeine. We now investigated the role of CD73 in exercise by comparing female wild-type (WT) and CD73 knockout (KO) mice in a treadmill-graded test to evaluate running power, oxygen uptake (V̇O2), and respiratory exchange ratio (RER) - the gold standards characterizing physical performance. Spontaneous locomotion in the open field and submaximal running power and V̇O2 in the treadmill were similar between CD73-KO and WT mice; V̇O2max also demonstrated equivalent aerobic power, but CD73-KO mice displayed a 43.7 ± 4.2% larger critical power (large effect size, P < 0.05) and 3.8 ± 0.4% increase of maximum RER (small effect size, P < 0.05). Thus, KO of CD73 was ergogenic; i.e., it increased physical performance.


Asunto(s)
5'-Nucleotidasa/deficiencia , 5'-Nucleotidasa/genética , Prueba de Esfuerzo/métodos , Eliminación de Gen , Condicionamiento Físico Animal/métodos , Condicionamiento Físico Animal/fisiología , Animales , Femenino , Ratones , Ratones Noqueados
12.
Neurobiol Dis ; 146: 105137, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33049319

RESUMEN

Angelman syndrome (AS) is a neurodevelopmental disorder caused by loss of function of the maternally inherited Ube3a neuronal protein, whose main features comprise severe intellectual disabilities and motor impairments. Previous studies with the Ube3am-/p+ mouse model of AS revealed deficits in synaptic plasticity and memory. Since adenosine A2A receptors (A2AR) are powerful modulators of aberrant synaptic plasticity and A2AR blockade prevents memory dysfunction in various brain diseases, we tested if A2AR could control deficits of memory and hippocampal synaptic plasticity in AS. We observed that Ube3am-/p+ mice were unable to resort to hippocampal-dependent search strategies when tested for learning and memory in the Morris water maze; this was associated with a decreased magnitude of long-term depression (LTD) in CA1 hippocampal circuits. There was an increased density of A2AR in the hippocampus of Ube3am-/p+ mice and their chronic treatment with the selective A2AR antagonist SCH58261 (0.1 mg/kg/day, ip) restored both hippocampal-dependent learning strategies, as well as LTD deficits. Altogether, this study provides the first evidence of a role of A2AR as a new prospective therapeutic target to manage learning deficits in AS.


Asunto(s)
Adenosina/metabolismo , Síndrome de Angelman/metabolismo , Hipocampo/fisiopatología , Plasticidad Neuronal/fisiología , Animales , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Aprendizaje/fisiología , Memoria/fisiología , Ratones , Ratones Endogámicos C57BL
13.
Eur J Neurosci ; 51(6): 1377-1387, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31454441

RESUMEN

Microglia cells exert a critical role in brain development, mainly supported by their immune functions, which predicts an impact on the genesis of psychiatric disorders. In fact, microglia stress during gestation is, for instance, associated with chronic anxiety and cognitive deficits accompanied by long-lasting, region- and sex-specific changes in microglia morphology. We recently reported that the pattern of microglia morphologic plasticity, which is sex-determined, impacts on anxious-like behaviour and cognition. We also reported that the pharmacologic blockade of adenosine A2A receptors (A2A R) is able to reshape microglia morphology, in a sex-specific manner and with behavioural sequelae. In order to better understand the role of A2A R in the sex differentiation of microglia, we now compared their morphology in wild-type and A2A R knockout male and female C57BL/6 mice in two cardinal brain regions implicated in anxiety-like behaviour and cognition, the prefrontal cortex (PFC) and the dorsal hippocampus (dHIP). We report interregional differences between PFC and dHIP in a sex-specific manner: while males presented more complex microglia in the dHIP, microglia from females had a more complex morphology in the PFC. Surprisingly, the genetic deletion of A2A R did not alter these sex differences, but promoted the exclusive remodelling (increase in complexity) in PFC microglia from females. These findings further support the existence of a heterogeneous microglial network, distinct between sexes and brain regions, and help characterizing the role of A2A R in the sex- and brain region-specific morphologic differentiation of microglia.


Asunto(s)
Microglía , Receptor de Adenosina A2A , Caracteres Sexuales , Adenosina , Animales , Encéfalo/metabolismo , Femenino , Hipocampo/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microglía/metabolismo , Receptor de Adenosina A2A/genética , Receptor de Adenosina A2A/metabolismo
14.
Pharmacol Res ; 162: 105253, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33080321

RESUMEN

This review discusses the evidence supporting a role for ATP signaling (operated by P2X and P2Y receptors) and adenosine signaling (mainly operated by A1 and A2A receptors) in the crosstalk between neurons, astrocytes, microglia and oligodendrocytes. An initial emphasis will be given to the cooperation between adenosine receptors to sharpen information salience encoding across synapses. The interplay between ATP and adenosine signaling in the communication between astrocytes and neurons will then be presented in context of the integrative properties of the astrocytic syncytium, allowing to implement heterosynaptic depression processes in neuronal networks. The process of microglia 'activation' and its control by astrocytes and neurons will then be analyzed under the perspective of an interplay between different P2 receptors and adenosine A2A receptors. In spite of these indications of a prominent role of purinergic signaling in the bidirectional communication between neurons and glia, its therapeutical exploitation still awaits obtaining an integrated view of the spatio-temporal action of ATP signaling and adenosine signaling, clearly distinguishing the involvement of both purinergic signaling systems in the regulation of physiological processes and in the control of pathogenic-like responses upon brain dysfunction or damage.


Asunto(s)
Adenosina Trifosfato/metabolismo , Comunicación Celular , Neuroglía/fisiología , Neuronas/fisiología , Animales , Humanos , Transducción de Señal
15.
J Neurochem ; 151(2): 227-237, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31274188

RESUMEN

The hippocampus is a brain region involved in processing both memory and emotions, through a preferential involvement of the dorsal hippocampus (DH) and ventral hippocampus (VH), respectively. Adenosine A1 and A2A receptors (A1 R and A2A R) control both mood and memory, but it is not known if there is a different adenosine modulation of synaptic plasticity along the hippocampal axis. Using adult, C57BL/6 male mice, we show that both A1 R and A2A R were more abundant in DH compared with VH. However, recordings of field excitatory postsynaptic potentials at Schaffer collaterals-CA1 pyramidal synapses revealed that A1 R were equi-effective to inhibit basal excitatory synaptic transmission in DH and VH, but endogenous A1 R activation was more effective to depress the probability of release in VH. In contrast, the selective A2A R antagonist (SCH58261, 50 nM) controlled both long-term potentiation (induced by a high frequency stimulation protocol) and long-term depression (induced by a low frequency stimulation protocol) selectively in DH rather than VH, whereas the selective A1 R antagonist (DPCPX, 100 nM) revealed a similar tonic inhibition of long-term depression in DH and VH. These findings show a different control of synaptic plasticity by the adenosine modulation system in the dorsal and ventral poles of the hippocampus, which may underlie a different efficiency of the adenosine system to control mood and memory.


Asunto(s)
Hipocampo/metabolismo , Plasticidad Neuronal/fisiología , Receptor de Adenosina A1/metabolismo , Receptor de Adenosina A2A/metabolismo , Antagonistas del Receptor de Adenosina A1/farmacología , Antagonistas del Receptor de Adenosina A2/farmacología , Animales , Hipocampo/química , Hipocampo/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Plasticidad Neuronal/efectos de los fármacos , Técnicas de Cultivo de Órganos , Receptor de Adenosina A1/análisis , Receptor de Adenosina A2A/análisis
16.
Neurobiol Dis ; 132: 104570, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31394204

RESUMEN

Adenosine A2A receptors (A2AR) overfunction causes synaptic and memory dysfunction in early Alzheimer's disease (AD). In a ß-amyloid (Aß1-42)-based model of early AD, we now unraveled that this involves an increased synaptic release of ATP coupled to an increased density and activity of ecto-5'-nucleotidase (CD73)-mediated formation of adenosine selectively activating A2AR. Thus, CD73 inhibition with α,ß-methylene-ADP impaired long-term potentiation (LTP) in mouse hippocampal slices, which is occluded upon previous superfusion with the A2AR antagonist SCH58261. Furthermore, α,ß-methylene-ADP did not alter LTP amplitude in global A2AR knockout (KO) and in forebrain neuron-selective A2AR-KO mice, but inhibited LTP amplitude in astrocyte-selective A2AR-KO mice; this shows that CD73-derived adenosine solely acts on neuronal A2AR. In agreement with the concept that ATP is a danger signal in the brain, ATP release from nerve terminals is increased after intracerebroventricular Aß1-42 administration, together with CD73 and A2AR upregulation in hippocampal synapses. Importantly, this increased CD73 activity is critically required for Aß1-42 to impair synaptic plasticity and memory since Aß1-42-induced synaptic and memory deficits were eliminated in CD73-KO mice. These observations establish a key regulatory role of CD73 activity over neuronal A2AR and imply CD73 as a novel target for modulation of early AD.


Asunto(s)
5'-Nucleotidasa/metabolismo , Adenosina/metabolismo , Enfermedad de Alzheimer/metabolismo , Potenciación a Largo Plazo/fisiología , Receptor de Adenosina A2A/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Masculino , Aprendizaje por Laberinto/fisiología , Trastornos de la Memoria/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
17.
Neurobiol Dis ; 117: 72-81, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29859867

RESUMEN

Alzheimer's disease (AD) begins with a deficit of synaptic function and adenosine A2A receptors (A2AR) are mostly located in synapses controlling synaptic plasticity. The over-activation of adenosine A2A receptors (A2AR) causes memory deficits and the blockade of A2AR prevents memory damage in AD models. We now enquired if this prophylactic role of A2AR might be extended to a therapeutic potential. We used the triple transgenic model of AD (3xTg-AD) and defined that the onset of memory dysfunction occurred at 4 months of age in the absence of locomotor or emotional alterations. At the onset of memory deficits, 3xTg mice displayed a decreased density of markers of excitatory synapses (10.6 ±â€¯3.8% decrease of vGluT1) without neuronal or glial overt damage and an increase of synaptic A2AR in the hippocampus (130 ±â€¯22%). After the onset of memory deficits in 3xTg-AD mice, a three weeks treatment with the selective A2AR antagonist normalized the up-regulation of hippocampal A2AR and restored hippocampal-dependent reference memory, as well as the decrease of hippocampal synaptic plasticity (60.0 ±â€¯3.7% decrease of long-term potentiation amplitude) and the decrease of global (syntaxin-I) and glutamatergic synaptic markers (vGluT1). These findings show a therapeutic-like ability of A2AR antagonists to recover synaptic and memory dysfunction in early AD.


Asunto(s)
Antagonistas del Receptor de Adenosina A2/uso terapéutico , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Trastornos de la Memoria/genética , Trastornos de la Memoria/metabolismo , Plasticidad Neuronal/fisiología , Antagonistas del Receptor de Adenosina A2/farmacología , Enfermedad de Alzheimer/tratamiento farmacológico , Animales , Modelos Animales de Enfermedad , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Aprendizaje por Laberinto/fisiología , Trastornos de la Memoria/tratamiento farmacológico , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Transgénicos , Plasticidad Neuronal/efectos de los fármacos , Proyectos Piloto , Receptor de Adenosina A2A/metabolismo
18.
Proc Natl Acad Sci U S A ; 112(25): 7833-8, 2015 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-26056314

RESUMEN

The consumption of caffeine (an adenosine receptor antagonist) correlates inversely with depression and memory deterioration, and adenosine A2A receptor (A2AR) antagonists emerge as candidate therapeutic targets because they control aberrant synaptic plasticity and afford neuroprotection. Therefore we tested the ability of A2AR to control the behavioral, electrophysiological, and neurochemical modifications caused by chronic unpredictable stress (CUS), which alters hippocampal circuits, dampens mood and memory performance, and enhances susceptibility to depression. CUS for 3 wk in adult mice induced anxiogenic and helpless-like behavior and decreased memory performance. These behavioral changes were accompanied by synaptic alterations, typified by a decrease in synaptic plasticity and a reduced density of synaptic proteins (synaptosomal-associated protein 25, syntaxin, and vesicular glutamate transporter type 1), together with an increased density of A2AR in glutamatergic terminals in the hippocampus. Except for anxiety, for which results were mixed, CUS-induced behavioral and synaptic alterations were prevented by (i) caffeine (1 g/L in the drinking water, starting 3 wk before and continued throughout CUS); (ii) the selective A2AR antagonist KW6002 (3 mg/kg, p.o.); (iii) global A2AR deletion; and (iv) selective A2AR deletion in forebrain neurons. Notably, A2AR blockade was not only prophylactic but also therapeutically efficacious, because a 3-wk treatment with the A2AR antagonist SCH58261 (0.1 mg/kg, i.p.) reversed the mood and synaptic dysfunction caused by CUS. These results herald a key role for synaptic A2AR in the control of chronic stress-induced modifications and suggest A2AR as candidate targets to alleviate the consequences of chronic stress on brain function.


Asunto(s)
Cafeína/farmacología , Trastornos de la Memoria/prevención & control , Trastornos del Humor/prevención & control , Neuronas/efectos de los fármacos , Receptor de Adenosina A2A/efectos de los fármacos , Estrés Psicológico/complicaciones , Animales , Masculino , Trastornos de la Memoria/etiología , Ratones , Ratones Endogámicos C57BL , Trastornos del Humor/etiología , Neuronas/metabolismo
19.
J Neurochem ; 134(1): 135-46, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25824528

RESUMEN

GPR37 is an orphan G protein-coupled receptor mostly enriched in brain areas such as the cerebellum, striatum, and hippocampus. Identified as a substrate of parkin, GPR37 has been suggested to play a role in Parkinson's disease. Distributed throughout the brain, the function of GPR37, however, remains unknown. We now provide the first mapping of GPR37 within the hippocampus, where GPR37 is widely expressed and localized at the level of the extrasynaptic plasma membrane of dendritic spines, dendritic shafts, and axon terminals. GPR37 per se does not appear to play a role in learning and memory, since knocking out GPR37 (GPR37-KO) did not alter the performance in different hippocampal-related memory tasks. This is in agreement with slice electrophysiology experiments showing no differences both in short-term plasticity paired-pulse facilitation and long-term potentiation between WT and GPR37-KO mice. However, we report a potential functional interaction between GPR37 and adenosine A2A receptors (A2 A R) in the hippocampus, with A2 A R modulating the GPR37-associated phenotype. Thus, the absence of GPR37 appeared to sensitize mice to hippocampal A2 A R-mediated signaling, as observed by the effect of the A2 A R antagonist SCH58261 increasing synaptic depotentiation, reducing novel object recognition memory and reverting the anxiolytic effect of GPR37 deletion. Collectively, these findings afford insight into the localization and role of the orphan GPR37 within the hippocampus with potential involvement in A2 A R function (i.e., A2 A R sensitization). GPR37 is an orphan G protein-coupled receptor widely expressed in the hippocampus and localized at the level of the extrasynaptic plasma membrane of dendritic spines, dendritic shafts and axon terminals. This orphan receptor per se does not appear to directly control the learning and memory processes; however knocking-out GPR37 triggers anxiolytic-like effects and sensitizes mice to hippocampal A2A R-mediated signalling.


Asunto(s)
Hipocampo/metabolismo , Enfermedad de Parkinson/metabolismo , Receptor de Adenosina A2A/metabolismo , Receptores Acoplados a Proteínas G/fisiología , Animales , Ansiedad/metabolismo , Células Cultivadas , Células HEK293 , Hipocampo/química , Humanos , Potenciación a Largo Plazo/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptor de Adenosina A2A/análisis , Receptores Acoplados a Proteínas G/análisis
20.
Neurobiol Dis ; 74: 41-57, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25449908

RESUMEN

Stimulation of dopamine D1 receptor (D1R) and adenosine A2A receptor (A2AR) increases cAMP-dependent protein kinase (PKA) activity in the brain. In Huntington's disease, by essentially unknown mechanisms, PKA activity is increased in the hippocampus of mouse models and patients and contributes to hippocampal-dependent cognitive impairment in R6 mice. Here, we show for the first time that D1R and A2AR density and functional efficiency are increased in hippocampal nerve terminals from R6/1 mice, which accounts for increased cAMP levels and PKA signaling. In contrast, PKA signaling was not altered in the hippocampus of Hdh(Q7/Q111) mice, a full-length HD model. In line with these findings, chronic (but not acute) combined treatment with D1R plus A2AR antagonists (SCH23390 and SCH58261, respectively) normalizes PKA activity in the hippocampus, facilitates long-term potentiation in behaving R6/1 mice, and ameliorates cognitive dysfunction. By contrast, chronic treatment with either D1R or A2AR antagonist alone does not modify PKA activity or improve cognitive dysfunction in R6/1 mice. Hyperactivation of both D1R and A2AR occurs in HD striatum and chronic treatment with D1R plus A2AR antagonists normalizes striatal PKA activity but it does not affect motor dysfunction in R6/1 mice. In conclusion, we show that parallel alterations in dopaminergic and adenosinergic signaling in the hippocampus contribute to increase PKA activity, which in turn selectively participates in hippocampal-dependent learning and memory deficits in HD. In addition, our results point to the chronic inhibition of both D1R and A2AR as a novel therapeutic strategy to manage early cognitive impairment in this neurodegenerative disease.


Asunto(s)
Trastornos del Conocimiento/fisiopatología , Enfermedad de Huntington/fisiopatología , Receptor de Adenosina A2A/metabolismo , Receptores de Dopamina D1/metabolismo , Antagonistas del Receptor de Adenosina A2/farmacología , Animales , Benzazepinas/farmacología , Trastornos del Conocimiento/etiología , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/fisiopatología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Modelos Animales de Enfermedad , Antagonistas de Dopamina/farmacología , Hipocampo/efectos de los fármacos , Hipocampo/fisiopatología , Enfermedad de Huntington/complicaciones , Potenciación a Largo Plazo/efectos de los fármacos , Potenciación a Largo Plazo/fisiología , Masculino , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Ratones Transgénicos , Actividad Motora/efectos de los fármacos , Actividad Motora/fisiología , Pirimidinas/farmacología , Receptores de Dopamina D1/antagonistas & inhibidores , Triazoles/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA