Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Biochimie ; 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38513823

RESUMEN

Inflammation and autoimmunity are known as central processes in many skin diseases, including psoriasis. It is therefore important to develop pre-clinical models that describe disease-related aspects to enable testing of pharmaceutical drug candidates and formulations. A widely accepted pre-clinical model of psoriasis is the imiquimod (IMQ)-induced skin inflammation mouse model, where topically applied IMQ provokes local skin inflammation. In this study, we investigated the abundance of a subset of matrix metalloproteinases (MMPs) in skin from mice with IMQ-induced skin inflammation and skin from naïve mice using targeted proteomics. Our findings reveal a significant increase in the abundance of MMP-2, MMP-7, MMP-8, and MMP-13 after treatment with IMQ compared to the control skin, while MMP-3, MMP-9, and MMP-10 were exclusively detected in the IMQ-treated skin. The increased abundance and broader representation of MMPs in the IMQ-treated skin provide valuable insight into the pathophysiology of skin inflammation in the IMQ model, adding to previous studies on cytokine levels using conventional immunochemical methods. Specifically, the changes in the MMP profiles observed in the IMQ-treated skin resemble the MMP patterns found in skin lesions of individuals with psoriasis. Ultimately, the differences in MMP abundance under IMQ-induced inflammation as compared to non-inflamed control skin can be exploited as a model to investigate drug efficacy or performance of drug delivery systems.

2.
FEBS J ; 290(1): 76-79, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36102354

RESUMEN

Proteases are organised in interconnected networks, together forming the protease web whose disturbance can have detrimental consequences for tissue homeostasis and response to environmental insults. Membrane-anchored sheddases are proteases that themselves can be released into the pericellular space by ectodomain shedding. Werny et al. have uncovered unexpected promiscuity in ectodomain shedding of meprin ß, a metalloprotease with critical functions in inflammation and fibrosis. These findings suggest new links within complex proteolytic networks like the epidermal protease network with potential implications for skin homeostasis, inflammation and response to injury. Comment on: https://doi.org/10.1111/febs.16586.


Asunto(s)
Metaloendopeptidasas , Péptido Hidrolasas , Metaloendopeptidasas/genética , Metaloendopeptidasas/metabolismo , Metaloproteasas , Proteolisis
3.
Toxicon ; 220: 106955, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36309071

RESUMEN

Snakebite envenoming was reintroduced as a Category A Neglected Tropical Disease by the World Health Organization in 2017. Since then, increased attention has been directed towards this affliction and towards the development of a deeper understanding of how snake venoms exert their toxic effects and how antivenoms can counter them. However, most of our in vivo generated knowledge stems from the use of animal models which do not always accurately reflect how the pathogenic effects of snake venoms manifest in humans. Moreover, animal experiments are associated with pain, distress, and eventually animal sacrifice due to the toxic nature of snake venoms. Related to this, the implementation of the 3Rs principle (Replacement, Reduction, and Refinement) in the use of experimental animals in snakebite envenoming research is recommended by the World Health Organization. Therefore, more humane experimental designs and new in vitro/ex vivo alternatives for experimental animals are sought after. Here, we report the use of an organotypic model of human skin to further elucidate the pathophysiology of the dermonecrotic effects caused by the venom of the black-necked spitting cobra, Naja nigricollis, in humans. The goal of this study is to expand the repertoire of available models that can be used to study the local tissue damages induced by cytotoxic venoms.


Asunto(s)
Mordeduras de Serpientes , Animales , Humanos , Mordeduras de Serpientes/complicaciones , Proteómica , Venenos Elapídicos/toxicidad , Antivenenos/farmacología , Naja , Venenos de Serpiente
4.
Curr Opin Chem Biol ; 60: 89-96, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33220627

RESUMEN

Proteome dynamics is governed by transcription, translation, and post-translational modifications. Limited proteolysis is an irreversible post-translational modification that generates multiple but unique proteoforms from almost every native protein. Elucidating these proteoforms and understanding their dynamics at a system-wide level is of utmost importance because uncontrolled proteolytic cleavages correlate with many pathologies. Mass spectrometry-based degradomics has revolutionized protease research and invented workflows for global identification of protease substrates with resolution down to precise cleavage sites. In this review, we provide an overview of current strategies in protease substrate degradomics and introduce the concept of workflow, mass spectrometry-based and in silico enrichment of protein termini with the perspective of full deconvolution of digital proteome maps for precision medicine, and degradomics biomarker diagnostics.


Asunto(s)
Péptido Hidrolasas/metabolismo , Proteómica/métodos , Animales , Biomarcadores/metabolismo , Humanos , Medicina de Precisión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA