Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Cell ; 140(5): 631-42, 2010 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-20211133

RESUMEN

Genome sequences of diverse free-living protists are essential for understanding eukaryotic evolution and molecular and cell biology. The free-living amoeboflagellate Naegleria gruberi belongs to a varied and ubiquitous protist clade (Heterolobosea) that diverged from other eukaryotic lineages over a billion years ago. Analysis of the 15,727 protein-coding genes encoded by Naegleria's 41 Mb nuclear genome indicates a capacity for both aerobic respiration and anaerobic metabolism with concomitant hydrogen production, with fundamental implications for the evolution of organelle metabolism. The Naegleria genome facilitates substantially broader phylogenomic comparisons of free-living eukaryotes than previously possible, allowing us to identify thousands of genes likely present in the pan-eukaryotic ancestor, with 40% likely eukaryotic inventions. Moreover, we construct a comprehensive catalog of amoeboid-motility genes. The Naegleria genome, analyzed in the context of other protists, reveals a remarkably complex ancestral eukaryote with a rich repertoire of cytoskeletal, sexual, signaling, and metabolic modules.


Asunto(s)
Evolución Biológica , Naegleria/genética , Eucariontes/clasificación , Eucariontes/genética , Flagelos/metabolismo , Datos de Secuencia Molecular , Naegleria/metabolismo , Filogenia , Proteínas Protozoarias/análisis , Proteínas Protozoarias/genética
2.
Cell ; 135(2): 272-83, 2008 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-18957202

RESUMEN

In most eukaryotes, histone methylation patterns regulate chromatin architecture and function: methylation of histone H3 lysine-9 (H3K9) demarcates heterochromatin, whereas H3K4 methylation demarcates euchromatin. We show here that the S. pombe JmjC-domain protein Lid2 is a trimethyl H3K4 demethylase responsible for H3K4 hypomethylation in heterochromatin. Lid2 interacts with the histone lysine-9 methyltransferase, Clr4, through the Dos1/Clr8-Rik1 complex, which also functions in the RNA interference pathway. Disruption of the JmjC domain alone results in severe heterochromatin defects and depletion of siRNA, whereas overexpressing Lid2 enhances heterochromatin silencing. The physical and functional link between H3K4 demethylation and H3K9 methylation suggests that the two reactions act in a coordinated manner. Surprisingly, crossregulation of H3K4 and H3K9 methylation in euchromatin also requires Lid2. We suggest that Lid2 enzymatic activity in euchromatin is regulated through a dynamic interplay with other histone-modification enzymes. Our findings provide mechanistic insight into the coordination of H3K4 and H3K9 methylation.


Asunto(s)
Eucromatina/metabolismo , Heterocromatina/metabolismo , Histonas/metabolismo , Oxidorreductasas N-Desmetilantes/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Segregación Cromosómica , Proteínas de Unión al ADN/metabolismo , Histona Metiltransferasas , N-Metiltransferasa de Histona-Lisina , Histonas/química , Lisina/metabolismo , Modelos Biológicos , Oxidorreductasas N-Desmetilantes/química , Mutación Puntual , Proteína Metiltransferasas/metabolismo , Estructura Terciaria de Proteína , Interferencia de ARN , Schizosaccharomyces/química , Proteínas de Schizosaccharomyces pombe/química , Factores de Transcripción/metabolismo
3.
PLoS Genet ; 16(4): e1007881, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32310948

RESUMEN

Meiotic double-strand breaks (DSBs) are generated by the evolutionarily conserved SPO11 complex in the context of chromatin loops that are organized along axial elements (AEs) of chromosomes. However, how DSBs are formed with respect to chromosome axes and the SPO11 complex remains unclear in plants. Here, we confirm that DSB and bivalent formation are defective in maize spo11-1 mutants. Super-resolution microscopy demonstrates dynamic localization of SPO11-1 during recombination initiation, with variable numbers of SPO11-1 foci being distributed in nuclei but similar numbers of SPO11-1 foci being found on AEs. Notably, cytological analysis of spo11-1 meiocytes revealed an aberrant AE structure. At leptotene, AEs of wild-type and spo11-1 meiocytes were similarly curly and discontinuous. However, during early zygotene, wild-type AEs become uniform and exhibit shortened axes, whereas the elongated and curly AEs persisted in spo11-1 mutants, suggesting that loss of SPO11-1 compromised AE structural maturation. Our results reveal an interesting relationship between SPO11-1 loading onto AEs and the conformational remodeling of AEs during recombination initiation.


Asunto(s)
Endodesoxirribonucleasas/metabolismo , Recombinación Homóloga , Meiosis , Zea mays/citología , Zea mays/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Emparejamiento Cromosómico , Roturas del ADN de Doble Cadena , Endodesoxirribonucleasas/genética , Genes de Plantas/genética , Meiosis/genética , Mutación , Fenotipo , Zea mays/genética
4.
J Cell Sci ; 133(13)2020 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-32503938

RESUMEN

Trypanosoma brucei, the causative agent of African sleeping sickness, has a flagellum that is crucial for motility, pathogenicity, and viability. In most eukaryotes, the intraflagellar transport (IFT) machinery drives flagellum biogenesis, and anterograde IFT requires kinesin-2 motor proteins. In this study, we investigated the function of the two T. brucei kinesin-2 proteins, TbKin2a and TbKin2b, in bloodstream form trypanosomes. We found that, compared to kinesin-2 proteins across other phyla, TbKin2a and TbKin2b show greater variation in neck, stalk and tail domain sequences. Both kinesins contributed additively to flagellar lengthening. Silencing TbKin2a inhibited cell proliferation, cytokinesis and motility, whereas silencing TbKin2b did not. TbKin2a was localized on the flagellum and colocalized with IFT components near the basal body, consistent with it performing a role in IFT. TbKin2a was also detected on the flagellar attachment zone, a specialized structure that connects the flagellum to the cell body. Our results indicate that kinesin-2 proteins in trypanosomes play conserved roles in flagellar biosynthesis and exhibit a specialized localization, emphasizing the evolutionary flexibility of motor protein function in an organism with a large complement of kinesins.


Asunto(s)
Cinesinas , Trypanosoma brucei brucei , Supervivencia Celular , Flagelos , Cinesinas/genética , Proteínas Protozoarias/genética , Trypanosoma brucei brucei/genética
5.
Nature ; 475(7355): 244-8, 2011 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-21725325

RESUMEN

Histone modification marks have an important role in many chromatin processes. During DNA replication, both heterochromatin and euchromatin are disrupted ahead of the replication fork and are then reassembled into their original epigenetic states behind the fork. How histone marks are accurately inherited from generation to generation is still poorly understood. In fission yeast (Schizosaccharomyces pombe), RNA interference (RNAi)-mediated histone methylation is cell cycle regulated. Centromeric repeats are transiently transcribed in the S phase of the cell cycle and are processed into short interfering RNAs (siRNAs) by the complexes RITS (RNA-induced initiation of transcriptional gene silencing) and RDRC (RNA-directed RNA polymerase complex). The small RNAs together with silencing factors-including Dos1 (also known as Clr8 and Raf1), Dos2 (also known as Clr7 and Raf2), Rik1 and Lid2-promote heterochromatic methylation of histone H3 at lysine 9 (H3K9) by a histone methyltransferase, Clr4 (refs 8-13). The methylation of H3K9 provides a binding site for Swi6, a structural and functional homologue of metazoan heterochromatin protein 1 (HP1). Here we characterize a silencing complex in fission yeast that contains Dos2, Rik1, Mms19 and Cdc20 (the catalytic subunit of DNA polymerase-ε). This complex regulates RNA polymerase II (RNA Pol II) activity in heterochromatin and is required for DNA replication and heterochromatin assembly. Our findings provide a molecular link between DNA replication and histone methylation, shedding light on how epigenetic marks are transmitted during each cell cycle.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Replicación del ADN/fisiología , Histonas/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas Cdc20 , Ciclo Celular/genética , Ciclo Celular/fisiología , Proteínas de Ciclo Celular/metabolismo , Cromosomas Fúngicos/química , Cromosomas Fúngicos/genética , Cromosomas Fúngicos/metabolismo , Epigénesis Genética , Regulación Fúngica de la Expresión Génica , Silenciador del Gen , Heterocromatina/química , Heterocromatina/genética , Heterocromatina/metabolismo , Histonas/química , Lisina/metabolismo , Metilación , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Interferencia de ARN , ARN Polimerasa II/metabolismo , ARN Interferente Pequeño , Schizosaccharomyces/citología , Factores de Transcripción/metabolismo , Transcripción Genética
6.
Nature ; 479(7371): 135-8, 2011 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-22002604

RESUMEN

Heterochromatin comprises tightly compacted repetitive regions of eukaryotic chromosomes. The inheritance of heterochromatin through mitosis requires RNA interference (RNAi), which guides histone modification during the DNA replication phase of the cell cycle. Here we show that the alternating arrangement of origins of replication and non-coding RNA in pericentromeric heterochromatin results in competition between transcription and replication in Schizosaccharomyces pombe. Co-transcriptional RNAi releases RNA polymerase II (Pol II), allowing completion of DNA replication by the leading strand DNA polymerase, and associated histone modifying enzymes that spread heterochromatin with the replication fork. In the absence of RNAi, stalled forks are repaired by homologous recombination without histone modification.


Asunto(s)
Replicación del ADN/fisiología , Silenciador del Gen , Heterocromatina/genética , Heterocromatina/metabolismo , Interferencia de ARN , ARN Polimerasa II/metabolismo , Schizosaccharomyces/genética , Centrómero/genética , Centrómero/metabolismo , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Daño del ADN , ADN Polimerasa Dirigida por ADN/metabolismo , Histonas/metabolismo , Recombinación Homóloga , Modelos Genéticos , Datos de Secuencia Molecular , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Origen de Réplica , Fase S , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Transcripción Genética
7.
J Cell Sci ; 126(Pt 10): 2246-55, 2013 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-23525017

RESUMEN

Most cell cycle regulation research has been conducted in model organisms representing a very small part of the eukaryotic domain. The highly divergent human pathogen Giardia intestinalis is ideal for studying the conservation of eukaryotic pathways. Although Giardia has many cell cycle regulatory components, its genome lacks all anaphase-promoting complex (APC) components. In the present study, we show that a single mitotic cyclin in Giardia is essential for progression into mitosis. Strikingly, Giardia cyclin B lacks the conserved N-terminal motif required for timely degradation mediated by the APC and ubiquitin conjugation. Expression of Giardia cyclin B in fission yeast is toxic, leading to a prophase arrest, and this toxicity is suppressed by the addition of a fission yeast degradation motif. Cyclin B is degraded during mitosis in Giardia cells, but this degradation appears to be independent of the ubiquitination pathway. Other putative APC substrates, aurora and polo-like kinases, also show no evidence of ubiquitination. This is the first example of mitosis not regulated by the APC and might reflect an evolutionary ancient form of cell cycle regulation.


Asunto(s)
Ciclina B/metabolismo , Giardia lamblia/fisiología , Proteínas Protozoarias/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Ciclosoma-Complejo Promotor de la Anafase/genética , Evolución Biológica , Ciclo Celular/genética , Secuencia Conservada/genética , Ciclina B/genética , Morfolinos/genética , Fosforilación , Estructura Terciaria de Proteína/genética , Proteolisis , Proteínas Protozoarias/genética , Schizosaccharomyces , Proteínas de Schizosaccharomyces pombe/genética , Especificidad de la Especie , Ubiquitinación
8.
Development ; 139(14): 2594-603, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22696296

RESUMEN

To ensure fertility, complex somatic and germinal cell proliferation and differentiation programs must be executed in flowers. Loss-of-function of the maize multiple archesporial cells 1 (mac1) gene increases the meiotically competent population and ablates specification of somatic wall layers in anthers. We report the cloning of mac1, which is the ortholog of rice TDL1A. Contrary to prior studies in rice and Arabidopsis in which mac1-like genes were inferred to act late to suppress trans-differentiation of somatic tapetal cells into meiocytes, we find that mac1 anthers contain excess archesporial (AR) cells that proliferate at least twofold more rapidly than normal prior to tapetal specification, suggesting that MAC1 regulates cell proliferation. mac1 transcript is abundant in immature anthers and roots. By immunolocalization, MAC1 protein accumulates preferentially in AR cells with a declining radial gradient that could result from diffusion. By transient expression in onion epidermis, we demonstrate experimentally that MAC1 is secreted, confirming that the predicted signal peptide domain in MAC1 leads to secretion. Insights from cytology and double-mutant studies with ameiotic1 and absence of first division1 mutants confirm that MAC1 does not affect meiotic cell fate; it also operates independently of an epidermal, Ocl4-dependent pathway that regulates proliferation of subepidermal cells. MAC1 both suppresses excess AR proliferation and is responsible for triggering periclinal division of subepidermal cells. We discuss how MAC1 can coordinate the temporal and spatial pattern of cell proliferation in maize anthers.


Asunto(s)
Flores/crecimiento & desarrollo , Flores/metabolismo , Oryza/metabolismo , Zea mays/crecimiento & desarrollo , Zea mays/metabolismo , Proliferación Celular , Flores/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reproducción/genética , Reproducción/fisiología , Zea mays/genética
9.
Eukaryot Cell ; 13(6): 776-84, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24728194

RESUMEN

Consistent with its proposed status as an early branching eukaryote, Giardia has the most divergent actin of any eukaryote and lacks core actin regulators. Although conserved actin-binding proteins are missing from Giardia, its actin is utilized similarly to that of other eukaryotes and functions in core cellular processes such as cellular organization, endocytosis, and cytokinesis. We set out to identify actin-binding proteins in Giardia using affinity purification coupled with mass spectroscopy (multidimensional protein identification technology [MudPIT]) and have identified >80 putative actin-binding proteins. Several of these have homology to conserved proteins known to complex with actin for functions in the nucleus and flagella. We validated localization and interaction for seven of these proteins, including 14-3-3, a known cytoskeletal regulator with a controversial relationship to actin. Our results indicate that although Giardia lacks canonical actin-binding proteins, there is a conserved set of actin-interacting proteins that are evolutionarily indispensable and perhaps represent some of the earliest functions of the actin cytoskeleton.


Asunto(s)
Actinas/metabolismo , Giardia lamblia/metabolismo , Proteínas de Microfilamentos/metabolismo , Proteínas Protozoarias/metabolismo , Proteínas 14-3-3/metabolismo , Citoesqueleto de Actina/química , Citoesqueleto de Actina/metabolismo , Núcleo Celular/metabolismo , Secuencia Conservada , Flagelos/metabolismo , Proteínas de Microfilamentos/química , Unión Proteica , Proteínas Protozoarias/química
10.
J Cell Sci ; 125(Pt 10): 2523-32, 2012 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-22366460

RESUMEN

The protozoan parasite Giardia intestinalis (also known as Giardia lamblia) is a major waterborne pathogen. During its life cycle, Giardia alternates between the actively growing trophozoite, which has two diploid nuclei with low levels of allelic heterozygosity, and the infectious cyst, which has four nuclei and a tough outer wall. Although the formation of the cyst wall has been studied extensively, we still lack basic knowledge about many fundamental aspects of the cyst, including the sources of the four nuclei and their distribution during the transformation from cyst into trophozoite. In this study, we tracked the identities of the nuclei in the trophozoite and cyst using integrated nuclear markers and immunofluorescence staining. We demonstrate that the cyst is formed from a single trophozoite by a mitotic division without cytokinesis and not by the fusion of two trophozoites. During excystation, the cell completes cytokinesis to form two daughter trophozoites. The non-identical nuclear pairs derived from the parent trophozoite remain associated in the cyst and are distributed to daughter cells during excystation as pairs. Thus, nuclear sorting (such that each daughter cell receives a pair of identical nuclei) does not appear to be a mechanism by which Giardia reduces heterozygosity between its nuclei. Rather, we show that the cyst nuclei exchange chromosomal genetic material, perhaps as a way to reduce heterozygosity in the absence of meiosis and sex, which have not been described in Giardia. These results shed light on fundamental aspects of the Giardia life cycle and have implications for our understanding of the population genetics and cell biology of this binucleate parasite.


Asunto(s)
Núcleo Celular/genética , Giardia lamblia/citología , Giardia lamblia/genética , Meiosis , Animales , Citoesqueleto/genética , Citoesqueleto/metabolismo , Giardiasis/parasitología , Mitosis , Trofozoítos/citología
11.
J Cell Sci ; 123(Pt 23): 4024-31, 2010 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-21045110

RESUMEN

Naegleria gruberi is a single-celled eukaryote best known for its remarkable ability to form an entire microtubule cytoskeleton de novo during its metamorphosis from an amoeba into a flagellate, including basal bodies (equivalent to centrioles), flagella and a cytoplasmic microtubule array. Our publicly available full-genome transcriptional analysis, performed at 20-minute intervals throughout Naegleria differentiation, reveals vast transcriptional changes, including the differential expression of genes involved in metabolism, signaling and the stress response. Cluster analysis of the transcriptional profiles of predicted cytoskeletal genes reveals a set of 55 genes enriched in centriole components (induced early) and a set of 82 genes enriched in flagella proteins (induced late). The early set includes genes encoding nearly every known conserved centriole component, as well as eight previously uncharacterized, highly conserved genes. The human orthologs of at least five genes localize to the centrosomes of human cells, one of which (here named Friggin) localizes specifically to mother centrioles.


Asunto(s)
Diferenciación Celular , Centriolos/genética , Flagelos/genética , Regulación del Desarrollo de la Expresión Génica , Naegleria/genética , Proteínas Protozoarias/genética , Centriolos/metabolismo , Citoesqueleto/genética , Citoesqueleto/metabolismo , Evolución Molecular , Flagelos/metabolismo , Humanos , Datos de Secuencia Molecular , Naegleria/citología , Naegleria/metabolismo , Proteínas Protozoarias/metabolismo
12.
13.
Eukaryot Cell ; 10(1): 142-5, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21115739

RESUMEN

We developed a series of plasmids that allow C-terminal tagging of any gene in its endogenous locus in Giardia intestinalis, with different epitope tags (triple hemagglutinin [3HA] and triple Myc [3Myc]) and selection markers (puromycin, neomycin, and a newly developed marker, blasticidin). Using these vectors, cyclin B and aurora kinase were tagged, expressed, and localized.


Asunto(s)
Genes Protozoarios , Giardia lamblia/genética , Aurora Quinasas , Ciclina B/genética , Ciclina B/metabolismo , Técnicas de Sustitución del Gen , Ingeniería Genética , Marcadores Genéticos , Vectores Genéticos , Giardia lamblia/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo
14.
Proc Natl Acad Sci U S A ; 106(9): 3603-8, 2009 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-19204280

RESUMEN

Molecular mechanisms that initiate meiosis have been studied in fungi and mammals, but little is known about the mechanisms directing the meiosis transition in other organisms. To elucidate meiosis initiation in plants, we characterized and cloned the ameiotic1 (am1) gene, which affects the transition to meiosis and progression through the early stages of meiotic prophase in maize. We demonstrate that all meiotic processes require am1, including expression of meiosis-specific genes, establishment of the meiotic chromosome structure, meiosis-specific telomere behavior, meiotic recombination, pairing, synapsis, and installation of the meiosis-specific cytoskeleton. As a result, in most am1 mutants premeiotic cells enter mitosis instead of meiosis. Unlike the genes involved in initiating meiosis in yeast and mouse, am1 also has a second downstream function, whereby it regulates the transition through a novel leptotene-zygotene checkpoint, a key step in early meiotic prophase. The am1 gene encodes a plant-specific protein with an unknown biochemical function. The AM1 protein is diffuse in the nucleus during the initiation of meiosis and then binds to chromatin in early meiotic prophase I when it regulates the leptotene-zygotene progression.


Asunto(s)
Meiosis , Mióticos , Proteínas de Plantas/metabolismo , Zea mays/citología , Zea mays/metabolismo , Alelos , Cromosomas/genética , Regulación de la Expresión Génica de las Plantas , Mutación/genética , Filogenia , Proteínas de Plantas/genética , Telómero/genética , Zea mays/genética
15.
BMC Plant Biol ; 11: 120, 2011 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-21867558

RESUMEN

BACKGROUND: Developmental cues to start meiosis occur late in plants. Ameiotic1 (Am1) encodes a plant-specific nuclear protein (AM1) required for meiotic entry and progression through early prophase I. Pollen mother cells (PMCs) remain mitotic in most am1 mutants including am1-489, while am1-praI permits meiotic entry but PMCs arrest at the leptotene/zygotene (L/Z) transition, defining the roles of AM1 protein in two distinct steps of meiosis. To gain more insights into the roles of AM1 in the transcriptional pre-meiotic and meiotic programs, we report here an in depth analysis of gene expression alterations in carefully staged anthers at 1 mm (meiotic entry) and 1.5 mm (L/Z) caused by each of these am1 alleles. RESULTS: 1.0 mm and 1.5 mm anthers of am1-489 and am1-praI were profiled in comparison to fertile siblings on Agilent® 4 × 44 K microarrays. Both am1-489 and am1-praI anthers are cytologically normal at 1.0 mm and show moderate transcriptome alterations. At the 1.5-mm stage both mutants are aberrant cytologically, and show more drastic transcriptome changes. There are substantially more absolute On/Off and twice as many differentially expressed genes (sterile versus fertile) in am1-489 than in am1-praI. At 1.5 mm a total of 4,418 genes are up- or down-regulated in either am1-489 or am1-praI anthers. These are predominantly stage-specific transcripts. Many putative meiosis-related genes were found among them including a small subset of allele-specific, mis-regulated genes specific to the PMCs. Nearly 60% of transcriptome changes in the set of transcripts mis-regulated in both mutants (N = 530) are enriched in PMCs, and only 1% are enriched in the tapetal cell transcriptome. All array data reported herein will be deposited and accessible at MaizeGDB http://www.maizegdb.org/. CONCLUSIONS: Our analysis of anther transcriptome modulations by two distinct am1 alleles, am1-489 and am1-praI, redefines the role of AM1 as a modulator of expression of a subset of meiotic genes, important for meiotic progression and provided stage-specific insights into the genetic networks associated with meiotic entry and early prophase I progression.


Asunto(s)
Meiosis , Polen/crecimiento & desarrollo , Transcriptoma , Zea mays/genética , Alelos , Flores/genética , Flores/crecimiento & desarrollo , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Profase Meiótica I , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos , Infertilidad Vegetal , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polen/genética , ARN de Planta/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Zea mays/crecimiento & desarrollo
16.
Yeast ; 28(3): 205-12, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21360732

RESUMEN

A novel reverse genetic approach termed 'marker reconstitution mutagenesis' was designed to generate mutational allelic series in genes of interest. This approach consists of two simple steps which utilize two selective markers. First, using one selective marker, a partial fragment of another selective marker gene is inserted adjacently to a gene of interest by homologous recombination. Second, random mutations are introduced precisely into the gene of interest, together with the reconstitution of the latter selective marker by homologous recombination. This approach was successfully tested for several genes in the fission yeast Schizosaccharomyces pombe. It circumvents the problems encountered with other methods and should be adaptable to any organism that incorporates exogenous DNA by homologous recombination.


Asunto(s)
Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genética Microbiana/métodos , Mutagénesis , Schizosaccharomyces/genética , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Schizosaccharomyces/fisiología
17.
J Exp Bot ; 62(5): 1533-44, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20926553

RESUMEN

During meiotic prophase homologous chromosomes find each other and pair. Then they synapse, as the linear protein core (axial element or lateral element) of each homologous chromosome is joined together by a transverse central element, forming the tripartite synaptonemal complex (SC). Ten uncloned Zea mays mutants in our collection were surveyed by transmission electron microscopy by making silver-stained spreads of SCs to identify mutants with non-homologous synapsis or improper synapsis. To analyse the mutants further, zyp1, the maize orthologue of the Arabidopsis central element component ZYP1 was cloned and an antibody was made against it. Using antibodies against ZYP1 and the lateral element components AFD1 and ASY1, it was found that most mutants form normal SCs but are defective in pairing. The large number of non-homologous synapsis mutants defective in pairing illustrates that synapsis and pairing can be uncoupled. Of the ten mutants studied, only dsy2 undergoes normal homologous chromosome recognition needed for homologous pairing. The dsy2 mutation fails to maintain the SC. ZYP1 elongation is blocked at zygotene, and only dots of ZYP1 are seen at prophase I. Another mutant, mei*N2415 showed incomplete but homologous synapsis and ASY1 and AFD1 have a normal distribution. Although installation of ZYP1 is initiated at zygotene, its progression is slowed down and not completed by pachytene in some cells and ZYP1 is not retained on pachytene chromosomes. The mutants described here are now available through the Maize Genetics Cooperation Stock Center (http://maizecoop.cropsci.uiuc.edu/).


Asunto(s)
Emparejamiento Cromosómico/fisiología , Cromosomas de las Plantas/metabolismo , Intercambio Genético/fisiología , Proteínas de Plantas/metabolismo , Complejo Sinaptonémico/metabolismo , Zea mays/fisiología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/inmunología , Proteínas de Ciclo Celular/genética , Emparejamiento Cromosómico/genética , Cromosomas de las Plantas/ultraestructura , Inmunohistoquímica , Meiosis/genética , Microscopía Electrónica de Transmisión , Mutación , Fenotipo , Proteínas de Plantas/genética , Proteínas de Plantas/inmunología , Tinción con Nitrato de Plata , Complejo Sinaptonémico/genética , Complejo Sinaptonémico/ultraestructura , Zea mays/citología , Zea mays/genética
18.
J Cell Biol ; 173(6): 845-51, 2006 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-16769823

RESUMEN

The telomere bouquet, i.e., telomere clustering on the nuclear envelope (NE) during meiotic prophase, is thought to promote homologous chromosome pairing. Using a visual screen, we identified bqt2/im295, a mutant that disrupts telomere clustering in fission yeast. Bqt2p is required for linking telomeres to the meiotic spindle pole body (SPB) but not for attachment of telomeres or the SPB to the NE. Bqt2p is expressed upon pheromone sensing and colocalizes thereafter to Sad1p, an SPB protein. This localization only depends on Bqt1p, not on other identified proteins required for telomere clustering. Upon pheromone sensing, generation of Sad1p foci next to telomeres depends on Bqt2p. However, depletion of Bqt2p from the SPB is dispensable for dissolving the telomere bouquet at the end of meiotic prophase. Therefore, telomere bouquet formation requires Bqt2p as a linking component and is finely regulated during meiotic progression.


Asunto(s)
Feromonas/metabolismo , Proteínas de Schizosaccharomyces pombe/fisiología , Schizosaccharomyces/metabolismo , Proteínas de Unión a Telómeros/fisiología , Telómero/metabolismo , Heterocromatina/metabolismo , Mutación , Profase , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Complejo Shelterina , Huso Acromático/metabolismo , Proteínas de Unión a Telómeros/genética
19.
J Cell Biol ; 173(3): 361-71, 2006 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-16682526

RESUMEN

The nuclear pore complex (NPC) is a large channel that spans the two lipid bilayers of the nuclear envelope and mediates transport events between the cytoplasm and the nucleus. Only a few NPC components are transmembrane proteins, and the role of these proteins in NPC function and assembly remains poorly understood. We investigate the function of the three integral membrane nucleoporins, which are Ndc1p, Pom152p, and Pom34p, in NPC assembly and transport in Saccharomyces cerevisiae. We find that Ndc1p is important for the correct localization of nuclear transport cargoes and of components of the NPC. However, the role of Ndc1p in NPC assembly is partially redundant with Pom152p, as cells lacking both of these proteins show enhanced NPC disruption. Electron microscopy studies reveal that the absence of Ndc1p and Pom152p results in aberrant pores that have enlarged diameters and lack proteinaceous material, leading to an increased diffusion between the cytoplasm and the nucleus.


Asunto(s)
Glicoproteínas de Membrana/fisiología , Poro Nuclear/fisiología , Proteínas Nucleares/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/fisiología , Transporte Activo de Núcleo Celular , División Celular/genética , División Celular/fisiología , Núcleo Celular/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Difusión , Glicoproteínas de Membrana/genética , Microscopía Electrónica de Transmisión , Mutación , Señales de Localización Nuclear/genética , Señales de Localización Nuclear/metabolismo , Poro Nuclear/metabolismo , Poro Nuclear/ultraestructura , Proteínas de Complejo Poro Nuclear/genética , Proteínas de Complejo Poro Nuclear/metabolismo , Proteínas de Complejo Poro Nuclear/fisiología , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Transporte de ARN , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Huso Acromático/genética , Huso Acromático/fisiología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
20.
Eukaryot Cell ; 9(6): 860-5, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20400468

RESUMEN

Centrioles and basal bodies are discrete structures composed of a cylinder of nine microtubule triplets and associated proteins. Metazoan centrioles can be found at mitotic spindle poles and are called basal bodies when used to organize microtubules to form the core structure of flagella. Naegleria gruberi, a unicellular eukaryote, grows as an amoeba that lacks a cytoplasmic microtubule cytoskeleton. When stressed, Naegleria rapidly (and synchronously) differentiates into a flagellate, forming a complete cytoplasmic cytoskeleton de novo, including two basal bodies and flagella. Here, we show that Naegleria has genes encoding conserved centriole proteins. Using novel antibodies, we describe the localization of three centrosomal protein homologs (SAS-6, gamma-tubulin, and centrin-1) during the assembly of the flagellate microtubule cytoskeleton. We also used these antibodies to show that Naegleria expresses the proteins in the same order as their incorporation into basal bodies, with SAS-6 localizing first, followed by centrin and finally gamma-tubulin. The similarities between basal body assembly in Naegleria and centriole assembly in animals indicate that mechanisms of assembly, as well as structure, have been conserved throughout eukaryotic evolution.


Asunto(s)
Naegleria/citología , Proteínas Protozoarias/metabolismo , Diferenciación Celular , Centriolos/metabolismo , Citoesqueleto/metabolismo , Microtúbulos/metabolismo , Naegleria/fisiología , Proteínas Protozoarias/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA