Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
PLoS One ; 19(5): e0303304, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38758919

RESUMEN

BACKGROUND AND OBJECTIVE: Collection of biosamples for translational research studies is vital for understanding biological pathways, discovering disease-related biomarkers, and identifying novel therapeutic targets. However, a lack of infrastructure for sample procurement, processing, storage, and shipping may hinder the ability of clinical research units to effectively engage in translational research. The purpose of this study was to identify the barriers to biosampling-based translational research in the critical care setting in Canada. METHODS: We administered an online survey to members of the Canadian Critical Care Trials Group (CCCTG), the Canadian Critical Care Translational Biology Group (CCCTBG), and the Canadian Critical Care Research Coordinators Group (CCCRCG). The survey focused on participants' personal experience of biosampling research, research infrastructure, motivating factors, and perceived barriers. RESULTS: We received 59 responses from 31 sites, including 6 community intensive care unit (ICU) sites. The overall response rate was 11.3%. The majority of respondents were research coordinators (44%), followed by clinician-investigators (33.8%), graduate students (10.2%), and PhD-investigators (8.5%). Although most (63.8%) respondents reported an interest in participating in translational research, they also reported that their ICUs were currently contributing to a third of the number of translational studies compared to clinical studies. For respondents with experience in participating in translational research studies, the most common barriers were lack of funding, lack of time, and insufficient research staff. For respondents without previous experience, the perceived facilitators were more interest from their research group, improved training/mentorship, increased funding, and better access to laboratory equipment. CONCLUSIONS: Our survey found that the majority of participants were interested in and recognize the value of participating in biosampling-based translational research but lacked funding, time, and research personnel trained in biosampling protocols. Our survey also identified factors that might encourage participation at new sites. Addressing these barriers will be a key step towards increasing translational research capacity across Canada.


Asunto(s)
Cuidados Críticos , Investigadores , Investigación Biomédica Traslacional , Humanos , Canadá , Estudios Transversales , Encuestas y Cuestionarios , Masculino , Femenino , Manejo de Especímenes/métodos
2.
Shock ; 59(4): 666-672, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36852972

RESUMEN

ABSTRACT: Introduction: Cell-free DNA (CFDNA) has emerged as a prognostic biomarker in patients with sepsis. Circulating CFDNA is hypothesized to be associated with histones in the form of nucleosomes. In vitro, DNA activates coagulation and inhibits fibrinolysis, whereas histones activate platelets and are cytotoxic to endothelial cells. Previous studies have targeted CFDNA or histones in animal models of sepsis using DNase I or heparins, respectively, which has reduced inflammatory and thrombosis markers, thereby improving survival. In this study, we explored the possibility that the combination of DNase I and a low-molecular weight heparin (LMWH) may be a better therapeutic approach than monotherapy in a murine model of abdominal sepsis. Methods: C57Bl/6 mice (8-12 weeks old, both sexes) were subjected to either cecal ligation and puncture or sham surgery. Mice were given antibiotics, fluids, and either saline, DNase I (intraperitoneally, 20 mg/kg/8 h), LMWH (dalteparin, subcutaneously 500 IU/kg/12 h), or a combination of both (n = 12-31). Mice were monitored over 72 h for survival. Organs and blood were harvested for analysis. Levels of LMWH, CFDNA, IL-6, citrullinated histone-H3, thrombin-antithrombin complexes, and protein C were measured in plasma. Results: Administration of either DNase I (81.8%) or LMWH (83.3%, prophylactic range of 0.12 ± 0.07 IU/mL achieved) improved the survival of septic mice compared with saline- (38.7%) and combination-treated mice (48.8%, P < 0.05). Combination-treated mice also showed a small but insignificant improvement in survival compared with saline-treated cecal ligation and puncture mice. Monotherapies may be improving survival by reducing blood bacterial loads, citrullinated histone-H3, and thrombin-antithrombin complexes, and improving protein C levels. Conclusions: Compared with saline- and combination-treated mice, administration of monotherapies to septic mice improved survival. These findings suggest that there may be a negative drug-drug interaction between DNase I and LMWH when DNase I is administered intraperitoneally in a murine model of polymicrobial abdominal sepsis.


Asunto(s)
Infecciones Intraabdominales , Sepsis , Masculino , Femenino , Ratones , Animales , Heparina de Bajo-Peso-Molecular/uso terapéutico , Histonas , Proteína C/metabolismo , Desoxirribonucleasa I/uso terapéutico , Trombina/metabolismo , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Sepsis/tratamiento farmacológico , Sepsis/metabolismo , Antitrombinas/uso terapéutico , Ratones Endogámicos C57BL
3.
Intensive Care Med Exp ; 11(1): 45, 2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37460911

RESUMEN

BACKGROUND: Preclinical sepsis models have been criticized for their inability to recapitulate human sepsis and suffer from methodological shortcomings that limit external validity and reproducibility. The National Preclinical Sepsis Platform (NPSP) is a consortium of basic science researchers, veterinarians, and stakeholders in Canada undertaking standardized multi-laboratory sepsis research to increase the efficacy and efficiency of bench-to-bedside translation. In this study, we aimed to develop and characterize a 72-h fecal-induced peritonitis (FIP) model of murine sepsis conducted in two independent laboratories. The experimental protocol was optimized by sequentially modifying dose of fecal slurry and timing of antibiotics in an iterative fashion, and then repeating the experimental series at site 1 and site 2. RESULTS: Escalating doses of fecal slurry (0.5-2.5 mg/g) resulted in increased disease severity, as assessed by the modified Murine Sepsis Score (MSS). However, the MSS was poorly associated with progression to death during the experiments, and mice were found dead without elevated MSS scores. Administration of early antibiotics within 4 h of inoculation rescued the animals from sepsis compared with late administration of antibiotics after 12 h, as evidenced by 100% survival and reduced bacterial load in peritoneum and blood in the early antibiotic group. Site 1 and site 2 had statistically significant differences in mortality (60% vs 88%; p < 0.05) for the same dose of fecal slurry (0.75 mg/g) and marked differences in body temperature between groups. CONCLUSIONS: We demonstrate a systematic approach to optimizing a 72-h FIP model of murine sepsis for use in multi-laboratory studies. Alterations to experimental conditions, such as dose of fecal slurry and timing of antibiotics, have clear impact on outcomes. Differences in mortality between sites despite rigorous standardization warrants further investigations to better understand inter-laboratory variation and methodological design in preclinical studies.

4.
Crit Care Explor ; 3(12): e0588, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34984340

RESUMEN

IMPORTANCE: Coronavirus disease 2019 patients have an increased risk of thrombotic complications that may reflect immunothrombosis, a process characterized by blood clotting, endothelial dysfunction, and the release of neutrophil extracellular traps. To date, few studies have investigated longitudinal changes in immunothrombosis biomarkers in these patients. Furthermore, how these longitudinal changes differ between coronavirus disease 2019 patients and noncoronavirus disease septic patients with pneumonia are unknown. OBJECTIVES: In this pilot observational study, we investigated the utility of immunothrombosis biomarkers for distinguishing between coronavirus disease 2019 patients and noncoronavirus disease septic patients with pneumonia. We also evaluated the utility of the biomarkers for predicting ICU mortality in these patients. DESIGN SETTING AND PARTICIPANTS: The participants were ICU patients with coronavirus disease 2019 (n = 14), noncoronavirus disease septic patients with pneumonia (n = 19), and healthy age-matched controls (n = 14). MAIN OUTCOMES AND MEASURES: Nine biomarkers were measured from plasma samples (on days 1, 2, 4, 7, 10, and/or 14). Analysis was based on binomial logit models and receiver operating characteristic analyses. RESULTS: Cell-free DNA, d-dimer, soluble endothelial protein C receptor, protein C, soluble thrombomodulin, fibrinogen, citrullinated histones, and thrombin-antithrombin complexes have significant powers for distinguishing coronavirus disease 2019 patients from healthy individuals. In comparison, fibrinogen, soluble endothelial protein C receptor, antithrombin, and cell-free DNA have significant powers for distinguishing coronavirus disease 2019 from pneumonia patients. The predictors of ICU mortality differ between the two patient groups: soluble thrombomodulin and citrullinated histones for coronavirus disease 2019 patients, and protein C and cell-free DNA or fibrinogen for pneumonia patients. In both patient groups, the most recent biomarker values have stronger prognostic value than their ICU day 1 values. CONCLUSIONS AND RELEVANCE: Fibrinogen, soluble endothelial protein C receptor, antithrombin, and cell-free DNA have utility for distinguishing coronavirus disease 2019 patients from noncoronavirus disease septic patients with pneumonia. The most important predictors of ICU mortality are soluble thrombomodulin/citrullinated histones for coronavirus disease 2019 patients, and protein C/cell-free DNA for noncoronavirus disease pneumonia patients. This hypothesis-generating study suggests that the pathophysiology of immunothrombosis differs between the two patient groups.

5.
J Thromb Haemost ; 19(6): 1546-1557, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33826233

RESUMEN

BACKGROUND: Immunothrombosis and coagulopathy in the lung microvasculature may lead to lung injury and disease progression in coronavirus disease 2019 (COVID-19). We aim to identify biomarkers of coagulation, endothelial function, and fibrinolysis that are associated with disease severity and may have prognostic potential. METHODS: We performed a single-center prospective study of 14 adult COVID-19(+) intensive care unit patients who were age- and sex-matched to 14 COVID-19(-) intensive care unit patients, and healthy controls. Daily blood draws, clinical data, and patient characteristics were collected. Baseline values for 10 biomarkers of interest were compared between the three groups, and visualized using Fisher's linear discriminant function. Linear repeated-measures mixed models were used to screen biomarkers for associations with mortality. Selected biomarkers were further explored and entered into an unsupervised longitudinal clustering machine learning algorithm to identify trends and targets that may be used for future predictive modelling efforts. RESULTS: Elevated D-dimer was the strongest contributor in distinguishing COVID-19 status; however, D-dimer was not associated with survival. Variable selection identified clot lysis time, and antigen levels of soluble thrombomodulin (sTM), plasminogen activator inhibitor-1 (PAI-1), and plasminogen as biomarkers associated with death. Longitudinal multivariate k-means clustering on these biomarkers alone identified two clusters of COVID-19(+) patients: low (30%) and high (100%) mortality groups. Biomarker trajectories that characterized the high mortality cluster were higher clot lysis times (inhibited fibrinolysis), higher sTM and PAI-1 levels, and lower plasminogen levels. CONCLUSIONS: Longitudinal trajectories of clot lysis time, sTM, PAI-1, and plasminogen may have predictive ability for mortality in COVID-19.


Asunto(s)
COVID-19 , Fibrinólisis , Adulto , Biomarcadores , Enfermedad Crítica , Tiempo de Lisis del Coágulo de Fibrina , Humanos , Estudios Longitudinales , Inhibidor 1 de Activador Plasminogénico , Estudios Prospectivos , SARS-CoV-2 , Activador de Tejido Plasminógeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA