Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Semin Cancer Biol ; 76: 45-53, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34242740

RESUMEN

TRAP1, the mitochondrial component of the Hsp90 family of molecular chaperones, displays important bioenergetic and proteostatic functions. In tumor cells, TRAP1 contributes to shape metabolism, dynamically tuning it with the changing environmental conditions, and to shield from noxious insults. Hence, TRAP1 activity has profound effects on the capability of neoplastic cells to evolve towards more malignant phenotypes. Here, we discuss our knowledge on the biochemical functions of TRAP1 in the context of a growing tumor mass, and we analyze the possibility of targeting its chaperone functions for developing novel anti-neoplastic approaches.


Asunto(s)
Proteínas HSP90 de Choque Térmico/metabolismo , Neoplasias/metabolismo , Neoplasias/patología , Animales , Humanos
2.
Mol Syst Biol ; 10: 734, 2014 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-24952591

RESUMEN

The machinery of mitochondrial DNA (mtDNA) maintenance is only partially characterized and is of wide interest due to its involvement in disease. To identify novel components of this machinery, plus other cellular pathways required for mtDNA viability, we implemented a genome-wide RNAi screen in Drosophila S2 cells, assaying for loss of fluorescence of mtDNA nucleoids stained with the DNA-intercalating agent PicoGreen. In addition to previously characterized components of the mtDNA replication and transcription machineries, positives included many proteins of the cytosolic proteasome and ribosome (but not the mitoribosome), three proteins involved in vesicle transport, some other factors involved in mitochondrial biogenesis or nuclear gene expression, > 30 mainly uncharacterized proteins and most subunits of ATP synthase (but no other OXPHOS complex). ATP synthase knockdown precipitated a burst of mitochondrial ROS production, followed by copy number depletion involving increased mitochondrial turnover, not dependent on the canonical autophagy machinery. Our findings will inform future studies of the apparatus and regulation of mtDNA maintenance, and the role of mitochondrial bioenergetics and signaling in modulating mtDNA copy number.


Asunto(s)
ADN Mitocondrial/análisis , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Genes Esenciales , ATPasas de Translocación de Protón Mitocondriales/genética , Animales , Autofagia , Línea Celular , ADN Mitocondrial/química , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Dosificación de Gen , Regulación de la Expresión Génica , Biblioteca de Genes , Genoma , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Interferencia de ARN , Especies Reactivas de Oxígeno/metabolismo
3.
J Biol Chem ; 287(46): 38729-40, 2012 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-23007390

RESUMEN

Proper coordination between glycolysis and respiration is essential, yet the regulatory mechanisms involved in sensing respiratory chain defects and modifying mitochondrial functions accordingly are unclear. To investigate the nature of this regulation, we introduced respiratory bypass enzymes into cultured human (HEK293T) cells and studied mitochondrial responses to respiratory chain inhibition. In the absence of respiratory chain inhibitors, the expression of alternative respiratory enzymes did not detectably alter cell physiology or mitochondrial function. However, in permeabilized cells NDI1 (alternative NADH dehydrogenase) bypassed complex I inhibition, whereas alternative oxidase (AOX) bypassed complex III or IV inhibition. In contrast, in intact cells the effects of the AOX bypass were suppressed by growth on glucose, whereas those produced by NDI1 were unaffected. Moreover, NDI1 abolished the glucose suppression of AOX-driven respiration, implicating complex I as the target of this regulation. Rapid Complex I down-regulation was partly released upon prolonged respiratory inhibition, suggesting that it provides an "emergency shutdown" system to regulate metabolism in response to dysfunctions of the oxidative phosphorylation. This system was independent of HIF1, mitochondrial superoxide, or ATP synthase regulation. Our findings reveal a novel pathway for adaptation to mitochondrial dysfunction and could provide new opportunities for combatting diseases.


Asunto(s)
Glucosa/metabolismo , Mitocondrias/metabolismo , Animales , Ciona intestinalis/metabolismo , Transporte de Electrón , Complejo I de Transporte de Electrón/metabolismo , Citometría de Flujo/métodos , Células HEK293 , Humanos , Microscopía Fluorescente/métodos , Proteínas Mitocondriales/metabolismo , Modelos Biológicos , Fosforilación Oxidativa , Oxidorreductasas/metabolismo , Fosforilación , Proteínas de Plantas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal
4.
Aging Cell ; 21(7): e13620, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35642724

RESUMEN

Mitochondria are the major source of reactive oxygen species (ROS), whose aberrant production by dysfunctional mitochondria leads to oxidative stress, thus contributing to aging as well as neurodegenerative disorders and cancer. Cells efficiently eliminate damaged mitochondria through a selective type of autophagy, named mitophagy. Here, we demonstrate the involvement of the atypical MAP kinase family member MAPK15 in cellular senescence, by preserving mitochondrial quality, thanks to its ability to control mitophagy and, therefore, prevent oxidative stress. We indeed demonstrate that reduced MAPK15 expression strongly decreases mitochondrial respiration and ATP production, while increasing mitochondrial ROS levels. We show that MAPK15 controls the mitophagic process by stimulating ULK1-dependent PRKN Ser108 phosphorylation and inducing the recruitment of damaged mitochondria to autophagosomal and lysosomal compartments, thus leading to a reduction of their mass, but also by participating in the reorganization of the mitochondrial network that usually anticipates their disposal. Consequently, MAPK15-dependent mitophagy protects cells from accumulating nuclear DNA damage due to mitochondrial ROS and, consequently, from senescence deriving from this chronic DNA insult. Indeed, we ultimately demonstrate that MAPK15 protects primary human airway epithelial cells from senescence, establishing a new specific role for MAPK15 in controlling mitochondrial fitness by efficient disposal of old and damaged organelles and suggesting this kinase as a new potential therapeutic target in diverse age-associated human diseases.


Asunto(s)
Senescencia Celular , Quinasas MAP Reguladas por Señal Extracelular , Mitofagia , Autofagia/genética , Senescencia Celular/genética , Senescencia Celular/fisiología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Humanos , Mitofagia/genética , Mitofagia/fisiología , Estrés Oxidativo/genética , Estrés Oxidativo/fisiología , Especies Reactivas de Oxígeno/metabolismo
5.
Cell Death Differ ; 29(12): 2335-2346, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35614131

RESUMEN

Binding of the mitochondrial chaperone TRAP1 to client proteins shapes bioenergetic and proteostatic adaptations of cells, but the panel of TRAP1 clients is only partially defined. Here we show that TRAP1 interacts with F-ATP synthase, the protein complex that provides most cellular ATP. TRAP1 competes with the peptidyl-prolyl cis-trans isomerase cyclophilin D (CyPD) for binding to the oligomycin sensitivity-conferring protein (OSCP) subunit of F-ATP synthase, increasing its catalytic activity and counteracting the inhibitory effect of CyPD. Electrophysiological measurements indicate that TRAP1 directly inhibits a channel activity of purified F-ATP synthase endowed with the features of the permeability transition pore (PTP) and that it reverses PTP induction by CyPD, antagonizing PTP-dependent mitochondrial depolarization and cell death. Conversely, CyPD outcompetes the TRAP1 inhibitory effect on the channel. Our data identify TRAP1 as an F-ATP synthase regulator that can influence cell bioenergetics and survival and can be targeted in pathological conditions where these processes are dysregulated, such as cancer.


Asunto(s)
Proteínas de Transporte de Membrana Mitocondrial , Poro de Transición de la Permeabilidad Mitocondrial , Humanos , Poro de Transición de la Permeabilidad Mitocondrial/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Peptidil-Prolil Isomerasa F/metabolismo , Mitocondrias/metabolismo , Chaperonas Moleculares/metabolismo , Adenosina Trifosfato/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo
6.
Cell Death Differ ; 29(10): 1996-2008, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35393510

RESUMEN

Neurofibromin loss drives neoplastic growth and a rewiring of mitochondrial metabolism. Here we report that neurofibromin ablation dampens expression and activity of NADH dehydrogenase, the respiratory chain complex I, in an ERK-dependent fashion, decreasing both respiration and intracellular NAD+. Expression of the alternative NADH dehydrogenase NDI1 raises NAD+/NADH ratio, enhances the activity of the NAD+-dependent deacetylase SIRT3 and interferes with tumorigenicity in neurofibromin-deficient cells. The antineoplastic effect of NDI1 is mimicked by administration of NAD+ precursors or by rising expression of the NAD+ deacetylase SIRT3 and is synergistic with ablation of the mitochondrial chaperone TRAP1, which augments succinate dehydrogenase activity further contributing to block pro-neoplastic metabolic changes. These findings shed light on bioenergetic adaptations of tumors lacking neurofibromin, linking complex I inhibition to mitochondrial NAD+/NADH unbalance and SIRT3 inhibition, as well as to down-regulation of succinate dehydrogenase. This metabolic rewiring could unveil attractive therapeutic targets for neoplasms related to neurofibromin loss.


Asunto(s)
Neoplasias , Sirtuina 3 , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , NAD/metabolismo , NADH Deshidrogenasa/metabolismo , Neurofibromina 1/genética , Neurofibromina 1/metabolismo , Respiración , Sirtuina 3/genética , Sirtuina 3/metabolismo , Succinato Deshidrogenasa/metabolismo
7.
Cell Rep ; 35(6): 109111, 2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33979610

RESUMEN

The f subunit is localized at the base of the ATP synthase peripheral stalk. Its function in the human enzyme is poorly characterized. Because full disruption of its ATP5J2 gene with the CRISPR-Cas9 strategy in the HAP1 human model has been shown to cause alterations in the amounts of other ATP synthase subunits, here we investigated the role of the f subunit in HeLa cells by regulating its levels through RNA interference. We confirm the role of the f subunit in ATP synthase dimer stability and observe that its downregulation per se does not alter the amounts of the other enzyme subunits or ATP synthase synthetic/hydrolytic activity. We show that downregulation of the f subunit causes abnormal crista organization and decreases permeability transition pore (PTP) size, whereas its re-expression in f subunit knockdown cells rescues mitochondrial morphology and PTP-dependent swelling.


Asunto(s)
Mitocondrias/metabolismo , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Células HeLa , Humanos , Permeabilidad
8.
Cell Death Dis ; 12(5): 434, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33934112

RESUMEN

The mitochondrial paralog of the Hsp90 chaperone family TRAP1 is often induced in tumors, but the mechanisms controlling its expression, as well as its physiological functions remain poorly understood. Here, we find that TRAP1 is highly expressed in the early stages of Zebrafish development, and its ablation delays embryogenesis while increasing mitochondrial respiration of fish larvae. TRAP1 expression is enhanced by hypoxic conditions both in developing embryos and in cancer models of Zebrafish and mammals. The TRAP1 promoter contains evolutionary conserved hypoxic responsive elements, and HIF1α stabilization increases TRAP1 levels. TRAP1 inhibition by selective compounds or by genetic knock-out maintains a high level of respiration in Zebrafish embryos after exposure to hypoxia. Our data identify TRAP1 as a primary regulator of mitochondrial bioenergetics in highly proliferating cells following reduction in oxygen tension and HIF1α stabilization.


Asunto(s)
Metabolismo Energético/inmunología , Proteínas HSP90 de Choque Térmico/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Chaperonas Moleculares/metabolismo , Animales , Hipoxia de la Célula , Modelos Animales de Enfermedad , Humanos , Pez Cebra
9.
Cell Rep ; 31(3): 107531, 2020 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-32320652

RESUMEN

TRAP1 is the mitochondrial paralog of the heat shock protein 90 (HSP90) chaperone family. Its activity as an energy metabolism regulator has important implications in cancer, neurodegeneration, and ischemia. Selective inhibitors of TRAP1 could inform on its mechanisms of action and set the stage for targeted drug development, but their identification was hampered by the similarity among active sites in HSP90 homologs. We use a dynamics-based approach to identify a TRAP1 allosteric pocket distal to its active site that can host drug-like molecules, and we select small molecules with optimal stereochemical features to target the pocket. These leads inhibit TRAP1, but not HSP90, ATPase activity and revert TRAP1-dependent downregulation of succinate dehydrogenase activity in cancer cells and in zebrafish larvae. TRAP1 inhibitors are not toxic per se, but they abolish tumorigenic growth of neoplastic cells. Our results indicate that exploiting conformational dynamics can expand the chemical space of chaperone antagonists to TRAP1-specific inhibitors with wide therapeutic opportunities.


Asunto(s)
Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Chaperonas Moleculares/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Regulación Alostérica , Animales , Antineoplásicos/química , Antineoplásicos/farmacología , Diseño de Fármacos , Femenino , Proteínas HSP90 de Choque Térmico/química , Proteínas HSP90 de Choque Térmico/genética , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Masculino , Ratones , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Simulación de Dinámica Molecular , Neoplasias de la Vaina del Nervio/tratamiento farmacológico , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Pez Cebra
10.
Cells ; 9(7)2020 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-32605166

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is typically characterized by high chemoresistance and metastatic spread, features mainly attributable to cancer stem cells (CSCs). It is of central interest the characterization of CSCs and, in particular, the study of their metabolic features in order to selectively identify their peculiarities for an efficient therapeutic approach. In this study, CSCs have been obtained by culturing different PDAC cell lines with a specific growth medium. Cells were characterized for the typical stem/mesenchymal properties at short-, medium-, and long-term culture. Metabolomics, proteomics, analysis of oxygen consumption rate in live cells, and the effect of the inhibition of lactate transporter on cell proliferation have been performed to delineate the metabolism of CSCs. We show that gradually de-differentiated pancreatic cancer cells progressively increase the expression of both stem and epithelial-to-mesenchymal transition markers, shift their metabolism from a glycolytic to an oxidative one, and lastly gain a quiescent state. These quiescent stem cells are characterized by high chemo-resistance, clonogenic ability, and metastatic potential. Re-differentiation reverts these features, re-activating their proliferative capacity and glycolytic metabolism, which generally correlates with high aggressiveness. These observations add an important piece of knowledge to the comprehension of the biology of CSCs, whose metabolic plasticity could be exploited for the generation of promising and selective therapeutic approaches for PDAC patients.


Asunto(s)
Neoplasias Pancreáticas/metabolismo , Animales , Carcinoma Ductal Pancreático/metabolismo , Ciclo Celular/fisiología , Diferenciación Celular/fisiología , Línea Celular Tumoral , Proliferación Celular/fisiología , Senescencia Celular/fisiología , Glucólisis/fisiología , Humanos , Células Madre Neoplásicas/citología , Células Madre Neoplásicas/metabolismo , Consumo de Oxígeno/fisiología , Pez Cebra
11.
Mol Cell Biochem ; 328(1-2): 75-84, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19266167

RESUMEN

Cadmium-breast epithelial cell interactions were studied by analyzing some mitochondria-related aspects of stress response. We treated immortalized non-tumor breast cells with 5 or 50 microM CdCl(2) for 24 or 96 h demonstrating that the exposure did not cause a significant mitochondrial proliferation, while it induced a significant increase in the respiratory activity and mitochondrial polarization. In addition, we found that hsp60 was up-regulated while hsp70 and COXII and COXIV were down-regulated. The mRNA for hsp70 remained constant and only the inducible form of the 70-kDa heat shock protein was over expressed. The mRNAs for COXII and COXIV remained constant after 24 h and increased after longer incubations while the respective proteins decreased. These findings provide additional information on the cellular and molecular aspects of the interaction between Cd and epithelial cells, and on alterations of mitochondria as early events in Cd cytotoxicity.


Asunto(s)
Mama/citología , Cadmio/toxicidad , Células Epiteliales/citología , Mitocondrias/efectos de los fármacos , Línea Celular , Respiración de la Célula/efectos de los fármacos , Chaperonina 60/genética , Relación Dosis-Respuesta a Droga , Complejo IV de Transporte de Electrones/genética , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Proteínas HSP70 de Choque Térmico/genética , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Membranas
12.
G3 (Bethesda) ; 9(7): 2225-2234, 2019 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-31076384

RESUMEN

Drosophilamelanogaster, like most animal species, displays considerable genetic variation in both nuclear and mitochondrial DNA (mtDNA). Here we tested whether any of four natural mtDNA variants was able to modify the effect of the phenotypically mild, nuclear tko25t mutation, affecting mitochondrial protein synthesis. When combined with tko25t , the mtDNA from wild strain KSA2 produced pupal lethality, accompanied by the presence of melanotic nodules in L3 larvae. KSA2 mtDNA, which carries a substitution at a conserved residue of cytochrome b that is predicted to be involved in subunit interactions within respiratory complex III, conferred drastically decreased respiratory capacity and complex III activity in the tko25t but not a wild-type nuclear background. The complex III inhibitor antimycin A was able to phenocopy effects of the tko25t mutation in the KSA2 mtDNA background. This is the first report of a lethal, nuclear-mitochondrial interaction within a metazoan species, representing a paradigm for understanding genetic interactions between nuclear and mitochondrial genotype relevant to human health and disease.


Asunto(s)
Núcleo Celular/genética , Drosophila melanogaster/genética , Genotipo , Mitocondrias/genética , Mutaciones Letales Sintéticas/genética , Secuencia de Aminoácidos , Animales , Núcleo Celular/metabolismo , ADN Mitocondrial , Drosophila melanogaster/metabolismo , Complejo III de Transporte de Electrones/química , Complejo III de Transporte de Electrones/metabolismo , Dosificación de Gen , Regulación Enzimológica de la Expresión Génica , Mitocondrias/metabolismo , Modelos Moleculares , Mutación , Fosforilación Oxidativa , Fenotipo , Conformación Proteica , Relación Estructura-Actividad
13.
Front Oncol ; 8: 333, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30197878

RESUMEN

Mitochondria are dynamic organelles that exchange a multiplicity of signals with other cell compartments, in order to finely adjust key biological routines to the fluctuating metabolic needs of the cell. During neoplastic transformation, cells must provide an adequate supply of the anabolic building blocks required to meet a relentless proliferation pressure. This can occur in conditions of inconstant blood perfusion leading to variations in oxygen and nutrient levels. Mitochondria afford the bioenergetic plasticity that allows tumor cells to adapt and thrive in this ever changing and often unfavorable environment. Here we analyse how mitochondria orchestrate the profound metabolic rewiring required for neoplastic growth.

14.
Mol Biol Cell ; 29(7): 809-819, 2018 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-29343549

RESUMEN

The Drosophila gene products Bet1, Slh, and CG10144, predicted to function in intracellular vesicle trafficking, were previously found to be essential for mitochondrial nucleoid maintenance. Here we show that Slh and Bet1 cooperate to maintain mitochondrial functions. In their absence, mitochondrial content, membrane potential, and respiration became abnormal, accompanied by mitochondrial proteotoxic stress, but without direct effects on mtDNA. Immunocytochemistry showed that both Slh and Bet1 are localized at the Golgi, together with a proportion of Rab5-positive vesicles. Some Bet1, as well as a tiny amount of Slh, cofractionated with highly purified mitochondria, while live-cell imaging showed coincidence of fluorescently tagged Bet1 with most Lysotracker-positive and a small proportion of Mitotracker-positive structures. This three-way association was disrupted in cells knocked down for Slh, although colocalized lysosomal and mitochondrial signals were still seen. Neither Slh nor Bet1 was required for global mitophagy or endocytosis, but prolonged Slh knockdown resulted in G2 growth arrest, with increased cell diameter. These effects were shared with knockdown of betaCOP but not of CG1044, Snap24, or Syntaxin6. Our findings implicate vesicle sorting at the cis-Golgi in mitochondrial quality control.

15.
Mol Cell Biol ; 38(24)2018 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-30224521

RESUMEN

Downregulation of Jun N-terminal kinase (JNK) signaling inhibits cell migration in diverse model systems. In Drosophila pupal development, attenuated JNK signaling in the thoracic dorsal epithelium leads to defective midline closure, resulting in cleft thorax. Here we report that concomitant expression of the Ciona intestinalis alternative oxidase (AOX) was able to compensate for JNK pathway downregulation, substantially correcting the cleft thorax phenotype. AOX expression also promoted wound-healing behavior and single-cell migration in immortalized mouse embryonic fibroblasts (iMEFs), counteracting the effect of JNK pathway inhibition. However, AOX was not able to rescue developmental phenotypes resulting from knockdown of the AP-1 transcription factor, the canonical target of JNK, nor its targets and had no effect on AP-1-dependent transcription. The migration of AOX-expressing iMEFs in the wound-healing assay was differentially stimulated by antimycin A, which redirects respiratory electron flow through AOX, altering the balance between mitochondrial ATP and heat production. Since other treatments affecting mitochondrial ATP did not stimulate wound healing, we propose increased mitochondrial heat production as the most likely primary mechanism of action of AOX in promoting cell migration in these various contexts.


Asunto(s)
Movimiento Celular/fisiología , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Proteínas Mitocondriales/metabolismo , Oxidorreductasas/metabolismo , Proteínas de Plantas/metabolismo , Transducción de Señal/fisiología , Adenosina Trifosfato/metabolismo , Animales , Células Cultivadas , Ciona intestinalis/metabolismo , Ciona intestinalis/fisiología , Regulación hacia Abajo/fisiología , Drosophila/metabolismo , Drosophila/fisiología , Proteínas de Drosophila/metabolismo , Femenino , Fibroblastos/metabolismo , Fibroblastos/fisiología , Masculino , Ratones , Mitocondrias/metabolismo , Mitocondrias/fisiología , Fenotipo , Tórax/metabolismo , Tórax/fisiología , Factor de Transcripción AP-1/metabolismo , Transcripción Genética/fisiología , Cicatrización de Heridas/fisiología
16.
Mitochondrion ; 34: 75-83, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28214560

RESUMEN

We evaluated the role of natural mitochondrial DNA (mtDNA) variation on mtDNA copy number, biochemical features and life history traits in Drosophila cybrid strains. We demonstrate the effects of both coding region and non-coding A+T region variation on mtDNA copy number, and demonstrate that copy number correlates with mitochondrial biochemistry and metabolically important traits such as development time. For example, high mtDNA copy number correlates with longer development times. Our findings support the hypothesis that mtDNA copy number is modulated by mtDNA genome variation and suggest that it affects OXPHOS efficiency through changes in the organization of the respiratory membrane complexes to influence organismal phenotype.


Asunto(s)
ADN Mitocondrial/genética , Drosophila/genética , Drosophila/fisiología , Genotipo , Fenotipo , Animales , Respiración de la Célula , Femenino , Dosificación de Gen , Masculino , Mitocondrias/genética , Mitocondrias/metabolismo , Fosforilación Oxidativa
17.
Cell Rep ; 18(3): 659-672, 2017 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-28099845

RESUMEN

Mutations in neurofibromin, a Ras GTPase-activating protein, lead to the tumor predisposition syndrome neurofibromatosis type 1. Here, we report that cells lacking neurofibromin exhibit enhanced glycolysis and decreased respiration in a Ras/ERK-dependent way. In the mitochondrial matrix of neurofibromin-deficient cells, a fraction of active ERK1/2 associates with succinate dehydrogenase (SDH) and TRAP1, a chaperone that promotes the accumulation of the oncometabolite succinate by inhibiting SDH. ERK1/2 enhances both formation of this multimeric complex and SDH inhibition. ERK1/2 kinase activity is favored by the interaction with TRAP1, and TRAP1 is, in turn, phosphorylated in an ERK1/2-dependent way. TRAP1 silencing or mutagenesis at the serine residues targeted by ERK1/2 abrogates tumorigenicity, a phenotype that is reverted by addition of a cell-permeable succinate analog. Our findings reveal that Ras/ERK signaling controls the metabolic changes orchestrated by TRAP1 that have a key role in tumor growth and are a promising target for anti-neoplastic strategies.


Asunto(s)
Proteínas HSP90 de Choque Térmico/metabolismo , Mitocondrias/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Neurofibromina 1/genética , Animales , Sistemas CRISPR-Cas/genética , Línea Celular , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Proteínas HSP90 de Choque Térmico/genética , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , MAP Quinasa Quinasa 1/genética , MAP Quinasa Quinasa 1/metabolismo , Ratones , Simulación de Dinámica Molecular , Neurofibromina 1/deficiencia , Fosforilación , Estructura Terciaria de Proteína , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Transducción de Señal/efectos de los fármacos , Succinato Deshidrogenasa/antagonistas & inhibidores , Succinato Deshidrogenasa/metabolismo , Succinatos/química , Succinatos/farmacología , Proteínas ras/metabolismo
18.
PLoS One ; 10(7): e0131990, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26161955

RESUMEN

INTRODUCTION: Diabetes Associated Protein in Insulin-sensitive Tissues (DAPIT) is a subunit of mitochondrial ATP synthase and has also been found to associate with the vacuolar H+-ATPase. Its expression is particularly high in cells with elevated aerobic metabolism and in epithelial cells that actively transport nutrients and ions. Deletion of DAPIT is known to induce loss of mitochondrial ATP synthase but the effects of its over-expression are obscure. RESULTS: In order to study the consequences of high expression of DAPIT, we constructed a transgenic cell line that constitutively expressed DAPIT in human embryonal kidney cells, HEK293T. Enhanced DAPIT expression decreased mtDNA content and mitochondrial mass, and saturated respiratory chain by decreasing H+-ATP synthase activity. DAPIT over-expression also increased mitochondrial membrane potential and superoxide level, and translocated the transcription factors hypoxia inducible factor 1α (Hif1α) and ß-catenin to the nucleus. Accordingly, cells over-expressing DAPIT used more glucose and generated a larger amount of lactate compared to control cells. Interestingly, these changes were associated with an epithelial to mesenchymal (EMT)-like transition by changing E-cadherin to N-cadherin and up-regulating several key junction/adhesion proteins. At physiological level, DAPIT over-expression slowed down cell growth by G1 arrest and migration, and enhanced cell detachment. Several cancers also showed an increase in genomic copy number of Usmg5 (gene encoding DAPIT), thereby providing strong correlative evidence for DAPIT possibly having oncogenic function in cancers. CONCLUSIONS: DAPIT over-expression thus appears to modulate mitochondrial functions and alter cellular regulations, promote anaerobic metabolism and induce EMT-like transition. We propose that DAPIT over-expression couples the changes in mitochondrial metabolism to physiological and pathophysiological regulations, and suggest it could play a critical role in H+-ATP synthase dysfunctions.


Asunto(s)
Glucosa/metabolismo , ATPasas de Translocación de Protón Mitocondriales/genética , Transporte Activo de Núcleo Celular , Transición Epitelial-Mesenquimal , Dosificación de Gen , Expresión Génica , Células HEK293 , Humanos , Ácido Láctico/biosíntesis , Mitocondrias/metabolismo , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Neoplasias/genética
19.
Sci Rep ; 5: 18295, 2015 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-26672986

RESUMEN

The mitochondrial alternative oxidase, AOX, carries out the non proton-motive re-oxidation of ubiquinol by oxygen in lower eukaryotes, plants and some animals. Here we created a modified version of AOX from Ciona instestinalis, carrying mutations at conserved residues predicted to be required for chelation of the diiron prosthetic group. The modified protein was stably expressed in mammalian cells or flies, but lacked enzymatic activity and was unable to rescue the phenotypes of flies knocked down for a subunit of cytochrome oxidase. The mutated AOX transgene is thus a potentially useful tool in studies of the physiological effects of AOX expression.


Asunto(s)
Ciona intestinalis/enzimología , Drosophila melanogaster/enzimología , Complejo IV de Transporte de Electrones/metabolismo , Hierro/metabolismo , Proteínas Mitocondriales/metabolismo , Mutación , Oxidorreductasas/metabolismo , Proteínas de Plantas/metabolismo , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Línea Celular , Ciona intestinalis/genética , Proteínas de Drosophila/deficiencia , Proteínas de Drosophila/genética , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Complejo IV de Transporte de Electrones/genética , Femenino , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Hierro/química , Masculino , Proteínas Mitocondriales/química , Proteínas Mitocondriales/genética , Modelos Moleculares , Datos de Secuencia Molecular , Oxidorreductasas/química , Oxidorreductasas/genética , Consumo de Oxígeno , Proteínas de Plantas/química , Proteínas de Plantas/genética , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido
20.
Int J Mol Med ; 11(4): 509-13, 2003 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-12632106

RESUMEN

Post-transcriptional regulation of mRNA metabolism is involved in processes as different as cell fate specification in development and cell response to a large variety of environmental cues. Regulation of all steps of RNA metabolism depends on RNA-binding proteins (RBPs). By using a T1 RNase-protection assay, we previously identified three H1 degrees RNA-binding factors (p40, p70 and p110), highly expressed in the rat brain. Here we report enrichment of these factors from brain extracts, obtained by affinity chromato-graphy of biotinylated H1 degrees RNA-protein complexes on streptavidin-conjugated paramagnetic particles. The purified proteins maintain RNA-binding ability and preference for histone messages.


Asunto(s)
Encéfalo/metabolismo , Proteínas de Unión al ARN/aislamiento & purificación , Animales , Cromatografía de Afinidad , Proteínas del Choque Térmico HSP40 , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas de Choque Térmico/metabolismo , Datos de Secuencia Molecular , ARN/metabolismo , Proteínas de Unión al ARN/genética , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA