Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Cereb Cortex ; 29(12): 4903-4918, 2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-30821834

RESUMEN

Neocortical astrogenesis follows neuronogenesis and precedes oligogenesis. Among key factors dictating its temporal articulation, there are progression rates of pallial stem cells (SCs) towards astroglial lineages as well as activation rates of astrocyte differentiation programs in response to extrinsic gliogenic cues. In this study, we showed that high Foxg1 SC expression antagonizes astrocyte generation, while stimulating SC self-renewal and committing SCs to neuronogenesis. We found that mechanisms underlying this activity are mainly cell autonomous and highly pleiotropic. They include a concerted downregulation of 4 key effectors channeling neural SCs to astroglial fates, as well as defective activation of core molecular machineries implementing astroglial differentiation programs. Next, we found that SC Foxg1 levels specifically decline during the neuronogenic-to-gliogenic transition, pointing to a pivotal Foxg1 role in temporal modulation of astrogenesis. Finally, we showed that Foxg1 inhibits astrogenesis from human neocortical precursors, suggesting that this is an evolutionarily ancient trait.


Asunto(s)
Astrocitos/citología , Factores de Transcripción Forkhead/metabolismo , Neocórtex/embriología , Proteínas del Tejido Nervioso/metabolismo , Células-Madre Neurales/citología , Neurogénesis/fisiología , Animales , Astrocitos/metabolismo , Diferenciación Celular/fisiología , Humanos , Ratones , Neocórtex/metabolismo , Células-Madre Neurales/metabolismo
2.
Commun Biol ; 6(1): 1133, 2023 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-37938221

RESUMEN

Previous reports have provided evidence that insufficient or excessive maternal folic acid (FA) intake during pregnancy can alter neurodevelopment of the offspring by modulating prenatal neurogenesis. Furthermore, our earlier work in a mouse model confirmed long-term structural changes at the cellular level of either deficient or excessive FA supply by comparably reducing dendritic arborization of cortical projection neurons. Here, we report that excessive amounts of FA decrease arborization of deep layer projection neurons, but not upper layer neurons and that reduced complexity of deep layer neurons is not observed when folic acid is replaced by folinic acid, a stable reduced form of folate. In addition, deficiency of B12, a vitamin that critically regulates folate metabolism, causes even more marked decreases in neuronal arborization in both deep and upper layer neurons and particularly in combination with FA excess. Furthermore, both FA excess and B12 deficiency affect synaptic density and morphology. Our findings point to neurodevelopmental risks associated with insufficient amounts of prenatal B12, particularly in association with high levels of FA intake, suggesting that the neurodevelopmental program is sensitive to an imbalance in the status of these interacting micronutrients.


Asunto(s)
Neocórtex , Vitamina B 12 , Femenino , Embarazo , Animales , Ratones , Ácido Fólico/farmacología , Vitaminas , Neuronas
3.
Nat Commun ; 14(1): 3962, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37407555

RESUMEN

Huntington's disease (HD) is a neurodegenerative disorder caused by CAG-repeat expansions in the huntingtin (HTT) gene. The resulting mutant HTT (mHTT) protein induces toxicity and cell death via multiple mechanisms and no effective therapy is available. Here, we employ a genome-wide screening in pluripotent mouse embryonic stem cells (ESCs) to identify suppressors of mHTT toxicity. Among the identified suppressors, linked to HD-associated processes, we focus on Metal response element binding transcription factor 1 (Mtf1). Forced expression of Mtf1 counteracts cell death and oxidative stress caused by mHTT in mouse ESCs and in human neuronal precursor cells. In zebrafish, Mtf1 reduces malformations and apoptosis induced by mHTT. In R6/2 mice, Mtf1 ablates motor defects and reduces mHTT aggregates and oxidative stress. Our screening strategy enables a quick in vitro identification of promising suppressor genes and their validation in vivo, and it can be applied to other monogenic diseases.


Asunto(s)
Enfermedad de Huntington , Enfermedades Neurodegenerativas , Ratones , Animales , Humanos , Modelos Animales de Enfermedad , Pez Cebra/genética , Pez Cebra/metabolismo , Enfermedad de Huntington/metabolismo , Neuronas/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo
4.
Mol Autism ; 13(1): 27, 2022 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-35733184

RESUMEN

BACKGROUND: Proper cerebral cortical development depends on the tightly orchestrated migration of newly born neurons from the inner ventricular and subventricular zones to the outer cortical plate. Any disturbance in this process during prenatal stages may lead to neuronal migration disorders (NMDs), which can vary in extent from focal to global. Furthermore, NMDs show a substantial comorbidity with other neurodevelopmental disorders, notably autism spectrum disorders (ASDs). Our previous work demonstrated focal neuronal migration defects in mice carrying loss-of-function alleles of the recognized autism risk gene WDFY3. However, the cellular origins of these defects in Wdfy3 mutant mice remain elusive and uncovering it will provide critical insight into WDFY3-dependent disease pathology. METHODS: Here, in an effort to untangle the origins of NMDs in Wdfy3lacZ mice, we employed mosaic analysis with double markers (MADM). MADM technology enabled us to genetically distinctly track and phenotypically analyze mutant and wild-type cells concomitantly in vivo using immunofluorescent techniques. RESULTS: We revealed a cell autonomous requirement of WDFY3 for accurate laminar positioning of cortical projection neurons and elimination of mispositioned cells during early postnatal life. In addition, we identified significant deviations in dendritic arborization, as well as synaptic density and morphology between wild type, heterozygous, and homozygous Wdfy3 mutant neurons in Wdfy3-MADM reporter mice at postnatal stages. LIMITATIONS: While Wdfy3 mutant mice have provided valuable insight into prenatal aspects of ASD pathology that remain inaccessible to investigation in humans, like most animal models, they do not a perfectly replicate all aspects of human ASD biology. The lack of human data makes it indeterminate whether morphological deviations described here apply to ASD patients or some of the other neurodevelopmental conditions associated with WDFY3 mutation. CONCLUSIONS: Our genetic approach revealed several cell autonomous requirements of WDFY3 in neuronal development that could underlie the pathogenic mechanisms of WDFY3-related neurodevelopmental conditions. The results are also consistent with findings in other ASD animal models and patients and suggest an important role for WDFY3 in regulating neuronal function and interconnectivity in postnatal life.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Trastorno Autístico , Proteínas Relacionadas con la Autofagia , Corteza Cerebral , Neuronas , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Trastorno Autístico/genética , Proteínas Relacionadas con la Autofagia/genética , Corteza Cerebral/citología , Humanos , Ratones , Mutación , Neurogénesis/genética , Neuronas/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA