Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Ther ; 32(7): 2130-2149, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38796707

RESUMEN

Lafora disease is a rare and fatal form of progressive myoclonic epilepsy typically occurring early in adolescence. The disease results from mutations in the EPM2A gene, encoding laforin, or the EPM2B gene, encoding malin. Laforin and malin work together in a complex to control glycogen synthesis and prevent the toxicity produced by misfolded proteins via the ubiquitin-proteasome system. Disruptions in either protein cause alterations in this complex, leading to the formation of Lafora bodies containing abnormal, insoluble, and hyperphosphorylated forms of glycogen. We used the Epm2a-/- knockout mouse model of Lafora disease to apply gene therapy by administering intracerebroventricular injections of a recombinant adeno-associated virus carrying the human EPM2A gene. We evaluated the effects of this treatment through neuropathological studies, behavioral tests, video-electroencephalography, electrophysiological recordings, and proteomic/phosphoproteomic analysis. Gene therapy ameliorated neurological and histopathological alterations, reduced epileptic activity and neuronal hyperexcitability, and decreased the formation of Lafora bodies. Moreover, differential quantitative proteomics and phosphoproteomics revealed beneficial changes in various molecular pathways altered in Lafora disease. Our results represent proof of principle for gene therapy with the coding region of the human EPM2A gene as a treatment for EPM2A-related Lafora disease.


Asunto(s)
Dependovirus , Modelos Animales de Enfermedad , Terapia Genética , Enfermedad de Lafora , Ratones Noqueados , Proteínas Tirosina Fosfatasas no Receptoras , Enfermedad de Lafora/terapia , Enfermedad de Lafora/genética , Enfermedad de Lafora/metabolismo , Animales , Terapia Genética/métodos , Proteínas Tirosina Fosfatasas no Receptoras/genética , Proteínas Tirosina Fosfatasas no Receptoras/metabolismo , Ratones , Dependovirus/genética , Humanos , Vectores Genéticos/genética , Vectores Genéticos/administración & dosificación , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Electroencefalografía , Proteómica/métodos
2.
Int J Mol Sci ; 25(3)2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38338656

RESUMEN

Amyloid beta 1-42 (Aß42) aggregates acutely impair hippocampal long-term potentiation (LTP) of synaptic transmission, and 17ß-estradiol is crucial for hippocampal LTP. We tested whether boosting the synthesis of neural-derived 17ß-estradiol (nE2) saves hippocampal LTP by the neurotoxic action of Aß42. Electrophysiological recordings were performed to measure dentate gyrus (DG) LTP in rat hippocampal slices. Using a pharmacological approach, we tested the ability of nE2 to counteract the LTP impairment caused by acute exposure to soluble Aß42 aggregates. nE2 was found to be required for LTP in DG under physiological conditions. Blockade of steroid 5α-reductase with finasteride, by increasing nE2 synthesis from testosterone (T), completely recovered LTP in slices treated with soluble Aß42 aggregates. Modulation of the glutamate N-methyl-D aspartate receptor (NMDAR) by memantine effectively rescued the LTP deficit observed in slices exposed to Aß42, and memantine prevented LTP reduction observed under the blocking of nE2 synthesis. nE2 is able to counteract Aß42-induced synaptic dysfunction. This effect depends on a rapid, non-genomic mechanism of action of nE2, which may share a common pathway with glutamate NMDAR signaling.


Asunto(s)
Estradiol , Potenciación a Largo Plazo , Ratas , Animales , Estradiol/farmacología , Estradiol/metabolismo , Péptidos beta-Amiloides/metabolismo , Memantina/farmacología , Hipocampo/metabolismo , Glutamatos/metabolismo
3.
Neural Regen Res ; 18(12): 2569-2572, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37449591

RESUMEN

The modern view of the immune system as a sensitizing and modulating machinery of the central nervous system is now well recognized. However, the specific mechanisms underlying this fine crosstalk have yet to be fully disentangled. To control cognitive function and behavior, the two systems are engaged in a subtle interacting act. In this scenario, a dual action of pro-inflammatory cytokines in the modulation of brain network connections is emerging. Pro-inflammatory cytokines are indeed required to express physiological plasticity in the hippocampal network while being detrimental when over-expressed during uncontrolled inflammatory processes. In this dynamic equilibrium, synaptic functioning and the performance of neural networks are ensured by maintaining an appropriate balance between pro- and anti-inflammatory molecules in the central nervous system microenvironment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA