Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Adv Exp Med Biol ; 1227: 81-94, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32072500

RESUMEN

Gremlin is a member of the TGF-ß superfamily that can act as a BMP antagonist, and recently, has been described as a ligand of the vascular endothelial growth factor receptor 2 (VEGFR2). Gremlin shares properties with the Notch signaling pathway. Both participate in embryonic development and are reactivated in pathological conditions. Gremlin is emerging as a potential therapeutic target and biomarker of renal diseases. Here we review the role of the Gremlin-VEGFR2 axis in renal damage and downstream signaling mechanisms, such as Notch pathway.


Asunto(s)
Péptidos y Proteínas de Señalización Intercelular/metabolismo , Receptores Notch/metabolismo , Transducción de Señal , Animales , Humanos , Riñón/metabolismo , Riñón/patología , Factor de Crecimiento Transformador beta/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
2.
J Exp Bot ; 66(18): 5531-42, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26002973

RESUMEN

The analysis of physiological parameters is important to understand the link between plant phenotypes and their genetic bases, and therefore is needed as an important element in the analysis of model and crop plants. The activities of enzymes involved in primary carbohydrate metabolism have been shown to be strongly associated with growth performance, crop yield, and quality, as well as stress responses. A simple, fast, and cost-effective method to determine activities for 13 key enzymes involved in carbohydrate metabolism has been established, mainly based on coupled spectrophotometric kinetic assays. The comparison of extraction buffers and requirement for dialysis of crude protein extracts resulted in a universal protein extraction protocol, suitable for the preparation of protein extracts from different organs of various species. Individual published kinetic activity assays were optimized and adapted for a semi-high-throughput 96-well assay format. These assays proved to be robust and are thus suitable for physiological phenotyping, enabling the characterization and diagnosis of the physiological state. The potential of the determination of distinct enzyme activity signatures as part of a physiological fingerprint was shown for various organs and tissues from three monocot and five dicot model and crop species, including two case studies with external stimuli. Differential and specific enzyme activity signatures are apparent during inflorescence development and upon in vitro cold treatment of young inflorescences in the monocot ryegrass, related to conditions for doubled haploid formation. Likewise, treatment of dicot spring oilseed rape with elevated CO2 concentration resulted in distinct patterns of enzyme activity responses in leaves.


Asunto(s)
Metabolismo de los Hidratos de Carbono , Proteínas de Plantas/genética , Plantas/genética , Proteómica/métodos , Productos Agrícolas/enzimología , Productos Agrícolas/genética , Proteínas de Plantas/metabolismo , Plantas/enzimología
3.
J Exp Bot ; 66(3): 863-78, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25392479

RESUMEN

Drought stress conditions modify source-sink relations, thereby influencing plant growth, adaptive responses, and consequently crop yield. Invertases are key metabolic enzymes regulating sink activity through the hydrolytic cleavage of sucrose into hexose monomers, thus playing a crucial role in plant growth and development. However, the physiological role of invertases during adaptation to abiotic stress conditions is not yet fully understood. Here it is shown that plant adaptation to drought stress can be markedly improved in tomato (Solanum lycopersicum L.) by overexpression of the cell wall invertase (cwInv) gene CIN1 from Chenopodium rubrum. CIN1 overexpression limited stomatal conductance under normal watering regimes, leading to reduced water consumption during the drought period, while photosynthetic activity was maintained. This caused a strong increase in water use efficiency (up to 50%), markedly improving water stress adaptation through an efficient physiological strategy of dehydration avoidance. Drought stress strongly reduced cwInv activity and induced its proteinaceous inhibitor in the leaves of the wild-type plants. However, the CIN1-overexpressing plants registered 3- to 6-fold higher cwInv activity in all analysed conditions. Surprisingly, the enhanced invertase activity did not result in increased hexose concentrations due to the activation of the metabolic carbohydrate fluxes, as reflected by the maintenance of the activity of key enzymes of primary metabolism and increased levels of sugar-phosphate intermediates under water deprivation. The induced sink metabolism in the leaves explained the maintenance of photosynthetic activity, delayed senescence, and increased source activity under drought stress. Moreover, CIN1 plants also presented a better control of production of reactive oxygen species and sustained membrane protection. Those metabolic changes conferred by CIN1 overexpression were accompanied by increases in the concentrations of the senescence-delaying hormone trans-zeatin and decreases in the senescence-inducing ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) in the leaves. Thus, cwInv critically functions at the integration point of metabolic, hormonal, and stress signals, providing a novel strategy to overcome drought-induced limitations to crop yield, without negatively affecting plant fitness under optimal growth conditions.


Asunto(s)
Pared Celular/enzimología , Chenopodium/genética , Sequías , Expresión Génica Ectópica , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Solanum lycopersicum/fisiología , beta-Fructofuranosidasa/genética , Chenopodium/metabolismo , Solanum lycopersicum/enzimología , Solanum lycopersicum/genética , Fotosíntesis , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , beta-Fructofuranosidasa/metabolismo
4.
J Exp Bot ; 65(20): 6081-95, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25170099

RESUMEN

Salinization of water and soil has a negative impact on tomato (Solanum lycopersicum L.) productivity by reducing growth of sink organs and by inducing senescence in source leaves. It has been hypothesized that yield stability implies the maintenance or increase of sink activity in the reproductive structures, thus contributing to the transport of assimilates from the source leaves through changes in sucrolytic enzymes and their regulation by phytohormones. In this study, classical and functional physiological approaches have been integrated to study the influence of metabolic and hormonal factors on tomato fruit sink activity, growth, and yield: (i) exogenous hormones were applied to plants, and (ii) transgenic plants overexpressing the cell wall invertase (cwInv) gene CIN1 in the fruits and de novo cytokinin (CK) biosynthesis gene IPT in the roots were constructed. Although salinity reduces fruit growth, sink activity, and trans-zeatin (tZ) concentrations, it increases the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) during the actively growing period (25 days after anthesis). Indeed, exogenous application of the CK analogue kinetin to salinized actively growing fruits recovered sucrolytic activities (mainly cwInv and sucrose synthase), sink strength, and fruit weight, whereas the ethylene-releasing compound ethephon had a negative effect in equivalent non-stressed fruits. Fruit yield was increased by both the constitutive expression of CIN1 in the fruits (up to 4-fold) or IPT in the root (up to 30%), owing to an increase in the fruit number (lower flower abortion) and in fruit weight. This is possibly related to a recovery of sink activity in reproductive tissues due to both (i) increase in sucrolytic activities (cwInv, sucrose synthase, and vacuolar and cytoplasmic invertases) and tZ concentration, and (ii) a decrease in the ACC levels and the activity of the invertase inhibitor. This study provides new functional evidences about the role of metabolic and hormonal inter-regulation of local sink processes in controlling tomato fruit sink activity, growth, and yield under salinity.


Asunto(s)
Ácido Abscísico/metabolismo , Citocininas/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Proteínas de Plantas/metabolismo , Solanum lycopersicum/metabolismo , Biomasa , Secuestro de Carbono , Pared Celular/enzimología , Flores/efectos de los fármacos , Flores/genética , Flores/metabolismo , Frutas/efectos de los fármacos , Frutas/genética , Frutas/metabolismo , Expresión Génica , Solanum lycopersicum/efectos de los fármacos , Solanum lycopersicum/genética , Proteínas de Plantas/genética , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente , Salinidad , Cloruro de Sodio/farmacología , Sacarosa/metabolismo , beta-Fructofuranosidasa/genética , beta-Fructofuranosidasa/metabolismo
5.
Physiol Plant ; 147(3): 352-68, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22697433

RESUMEN

Salt marshes constitute major sinks for heavy metal accumulation but the precise impact of salinity on heavy metal toxicity for halophyte plant species remains largely unknown. Young seedlings of Kosteletzkya virginica were exposed during 3 weeks in nutrient solution to Cd 5 µM in the presence or absence of 50 mM NaCl. Cadmium (Cd) reduced growth and shoot water content and had major detrimental effect on maximum quantum efficiency (F(v) /F(m) ), effective quantum yield of photosystem II (Y(II)) and electron transport rates (ETRs). Cd induced an oxidative stress in relation to an increase in O(2) (•-) and H(2) O(2) concentration and lead to a decrease in endogenous glutathione (GSH) and α-tocopherol in the leaves. Cd not only increased leaf zeatin and zeatin riboside concentration but also increased the senescing compounds 1-aminocyclopropane-1-carboxylic acid (ACC) and abscisic acid (ABA). Salinity reduced Cd accumulation already after 1 week of stress but was unable to restore shoot growth and thus did not induce any dilution effect. Salinity delayed the Cd-induced leaf senescence: NaCl reduced the deleterious impact of Cd on photosynthesis apparatus through an improvement of F(v) /F(m) , Y(II) and ETR. Salt reduced oxidative stress in Cd-treated plants through an increase in GSH, α-tocopherol and ascorbic acid synthesis and an increase in glutathione reductase (EC 1.6.4.2) activity. Additional salt reduced ACC and ABA accumulation in Cd+NaCl-treated leaves comparing to Cd alone. It is concluded that salinity affords efficient protection against Cd to the halophyte species K. virginica, in relation to an improved management of oxidative stress and hormonal status.


Asunto(s)
Antioxidantes/metabolismo , Cadmio/farmacología , Malvaceae/fisiología , Reguladores del Crecimiento de las Plantas/metabolismo , Ácido Abscísico/metabolismo , Aminoácidos Cíclicos/metabolismo , Clorofila/metabolismo , Transporte de Electrón , Glutatión/metabolismo , Glutatión Reductasa/metabolismo , Malvaceae/efectos de los fármacos , Malvaceae/enzimología , Malvaceae/crecimiento & desarrollo , Estrés Oxidativo , Fotosíntesis , Complejo de Proteína del Fotosistema II , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/enzimología , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/fisiología , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/enzimología , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/fisiología , Salinidad , Plantas Tolerantes a la Sal , Plantones/efectos de los fármacos , Plantones/enzimología , Plantones/crecimiento & desarrollo , Plantones/fisiología , Cloruro de Sodio/farmacología , Humedales , alfa-Tocoferol/metabolismo
6.
Methods Mol Biol ; 2472: 187-196, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35674901

RESUMEN

The NOTCH signaling pathway is an evolutionarily conserved family of transmembrane receptors, ligands, and transcription factors. The NOTCH signaling is activated in many biological processes including nephrogenesis, tubulogenesis, and glomerulogenesis, as well as during pathological situations. Activation of Notch signaling is characterized by successive proteolytic cleavages triggered by the interaction between membrane-bound Notch receptors and ligands expressed on neighboring cells. In chronic kidney diseases, activation of the canonical NOTCH signaling pathway has been described. The following protocols will allow the direct assessment of Jagged-1/NOTCH signaling activation in biopsies of patients with chronic kidney diseases and in murine experimental models of renal damage.


Asunto(s)
Receptores Notch , Insuficiencia Renal Crónica , Animales , Biopsia , Proteínas de Unión al Calcio/metabolismo , Proteínas Portadoras/metabolismo , Humanos , Proteína Jagged-1/genética , Riñón/metabolismo , Ligandos , Ratones , Receptores Notch/metabolismo , Transducción de Señal/fisiología
7.
Mol Cell Endocrinol ; 529: 111254, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33798633

RESUMEN

The most classical view of the renin-angiotensin system (RAS) emphasizes its role as an endocrine regulator of sodium balance and blood pressure. However, it has long become clear that the RAS has pleiotropic actions that contribute to organ damage, including modulation of inflammation. Angiotensin II (Ang II) activates angiotensin type 1 receptors (AT1R) to promote an inflammatory response and organ damage. This represents the pathophysiological basis for the successful use of RAS blockers to prevent and treat kidney and heart disease. However, other RAS components could have a built-in capacity to brake proinflammatory responses. Angiotensin type 2 receptor (AT2R) activation can oppose AT1R actions, such as vasodilatation, but its involvement in modulation of inflammation has not been conclusively proven. Angiotensin-converting enzyme 2 (ACE2) can process Ang II to generate angiotensin-(1-7) (Ang-(1-7)), that activates the Mas receptor to exert predominantly anti-inflammatory responses depending on the context. We now review recent advances in the understanding of the interaction of the RAS with inflammation. Specific topics in which novel information became available recently include intracellular angiotensin receptors; AT1R posttranslational modifications by tissue transglutaminase (TG2) and anti-AT1R autoimmunity; RAS modulation of lymphoid vessels and T lymphocyte responses, especially of Th17 and Treg responses; interactions with toll-like receptors (TLRs), programmed necrosis, and regulation of epigenetic modulators (e.g. microRNAs and bromodomain and extraterminal domain (BET) proteins). We additionally discuss an often overlooked effect of the RAS on inflammation which is the downregulation of anti-inflammatory factors such as klotho, peroxisome proliferator-activated receptor γ co-activator 1α (PGC-1α), transient receptor potential ankyrin 1 (TRPA1), SNF-related serine/threonine-protein kinase (SNRK), serine/threonine-protein phosphatase 6 catalytic subunit (Ppp6C) and n-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP). Both transcription factors, such as nuclear factor κB (NF-κB), and epigenetic regulators, such as miRNAs are involved in downmodulation of anti-inflammatory responses. A detailed analysis of pathways and targets for downmodulation of anti-inflammatory responses constitutes a novel frontier in RAS research.


Asunto(s)
Angiotensina II/inmunología , Angiotensina I/inmunología , Inflamación/inmunología , Fragmentos de Péptidos/inmunología , Sistema Renina-Angiotensina/inmunología , Equilibrio Hidroelectrolítico/inmunología , Angiotensina I/genética , Angiotensina II/genética , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/inmunología , Animales , Autoinmunidad , Presión Sanguínea/genética , Presión Sanguínea/inmunología , Regulación de la Expresión Génica , Humanos , Inflamación/genética , Inflamación/patología , Riñón/citología , Riñón/inmunología , Proteínas Klotho/genética , Proteínas Klotho/inmunología , Fragmentos de Péptidos/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/inmunología , Receptor de Angiotensina Tipo 1/genética , Receptor de Angiotensina Tipo 1/inmunología , Receptor de Angiotensina Tipo 2/genética , Receptor de Angiotensina Tipo 2/inmunología , Sistema Renina-Angiotensina/genética , Transducción de Señal , Linfocitos T/citología , Linfocitos T/inmunología , Equilibrio Hidroelectrolítico/genética
8.
Front Pharmacol ; 12: 662020, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34239439

RESUMEN

Acute kidney injury (AKI) is more frequent in elderly patients. Mechanisms contributing to AKI (tubular cell death, inflammatory cell infiltration, impaired mitochondrial function, and prolonged cell-cycle arrest) have been linked to cellular senescence, a process implicated in regeneration failure and progression to fibrosis. However, the molecular and pathological basis of the age-related increase in AKI incidence is not completely understood. To explore these mechanisms, experimental AKI was induced by folic acid (FA) administration in young (3-months-old) and old (1-year-old) mice, and kidneys were evaluated in the early phase of AKI, at 48 h. Tubular damage score, KIM-1 expression, the recruitment of infiltrating immune cells (mainly neutrophils and macrophages) and proinflammatory gene expression were higher in AKI kidneys of old than of young mice. Tubular cell death in FA-AKI involves several pathways, such as regulated necrosis and apoptosis. Ferroptosis and necroptosis cell-death pathways were upregulated in old AKI kidneys. In contrast, caspase-3 activation was only found in young but not in old mice. Moreover, the antiapoptotic factor BCL-xL was significantly overexpressed in old, injured kidneys, suggesting an age-related apoptosis suppression. AKI kidneys displayed evidence of cellular senescence, such as increased levels of cyclin dependent kinase inhibitors p16ink4a and p21cip1, and of the DNA damage response marker γH2AX. Furthermore, p21cip1 mRNA expression and nuclear staining for p21cip1 and γH2AX were higher in old than in young FA-AKI mice, as well as the expression of senescence-associated secretory phenotype (SASP) components (Il-6, Tgfb1, Ctgf, and Serpine1). Interestingly, some infiltrating immune cells were p21 or γH2AX positive, suggesting that molecular senescence in the immune cells ("immunosenescence") are involved in the increased severity of AKI in old mice. In contrast, expression of renal protective factors was dramatically downregulated in old AKI mice, including the antiaging factor Klotho and the mitochondrial biogenesis driver PGC-1α. In conclusion, aging resulted in more severe AKI after the exposure to toxic compounds. This increased toxicity may be related to magnification of proinflammatory-related pathways in older mice, including a switch to a proinflammatory cell death (necroptosis) instead of apoptosis, and overactivation of cellular senescence of resident renal cells and infiltrating inflammatory cells.

9.
Front Med (Lausanne) ; 8: 688060, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34307414

RESUMEN

Inflammation is a key characteristic of kidney disease, but this immune response is two-faced. In the acute phase of kidney injury, there is an activation of the immune cells to fight against the insult, contributing to kidney repair and regeneration. However, in chronic kidney diseases (CKD), immune cells that infiltrate the kidney play a deleterious role, actively participating in disease progression, and contributing to nephron loss and fibrosis. Importantly, CKD is a chronic inflammatory disease. In early CKD stages, patients present sub-clinical inflammation, activation of immune circulating cells and therefore, anti-inflammatory strategies have been proposed as a common therapeutic target for renal diseases. Recent studies have highlighted the plasticity of immune cells and the complexity of their functions. Among immune cells, monocytes/macrophages play an important role in all steps of kidney injury. However, the phenotype characterization between human and mice immune cells showed different markers; therefore the extrapolation of experimental studies in mice could not reflect human renal diseases. Here we will review the current information about the characteristics of different macrophage phenotypes, mainly focused on macrophage-related cytokines, with special attention to the chemokine CCL18, and its murine functional homolog CCL8, and the macrophage marker CD163, and their role in kidney pathology.

10.
Nefrologia (Engl Ed) ; 41(3): 244-257, 2021.
Artículo en Inglés, Español | MEDLINE | ID: mdl-33775443

RESUMEN

Interleukin-17A (IL-17A) is a proinflammatory cytokine produced by cells of the immune system, predominantly Th17 lymphocytes and γδ lymphocytes. In this paper, we review the role of IL-17A in the pathogenesis of hypertension and target organ damage. Studies in mice have shown that IL-17A increases blood pressure, probably by acting on multiple levels. Furthermore, IL-17A plasma concentrations are already elevated in patients with mild or moderate hypertension. Preclinical studies on arterial hypertension have detected IL-17A-producing cells in target organs such as the heart, vessels and kidneys. Patients with hypertensive nephrosclerosis show kidney infiltration by Th17 lymphocytes and γδ lymphocytes that express IL-17A. In addition, in experimental models of hypertension, blocking IL-17A by genetic strategies, or using neutralising antibodies, lowers blood pressure by acting on the vascular wall and tubule sodium transport and reduces damage to target organs. As a whole, the data presented in this review suggest that IL-17A participates in the regulation of blood pressure and in the genesis and maintenance of arterial hypertension, and may constitute a therapeutic target in the future.


Asunto(s)
Hipertensión/tratamiento farmacológico , Hipertensión/etiología , Interleucina-17/antagonistas & inhibidores , Interleucina-17/fisiología , Animales , Humanos , Ratones
11.
Nefrologia (Engl Ed) ; 41(3): 244-257, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-36166242

RESUMEN

Interleukin-17A (IL-17A) is a proinflammatory cytokine produced by cells of the immune system, predominantly Th17 and γδ lymphocytes. In this paper, we review the role of IL-17A in the pathogenesis of hypertension and in target organ damage. Preclinical studies in mice have shown that systemic adminstration of IL-17A increases blood pressure, probably by acting on multiple levels. Furthermore, IL-17A plasma concentrations are already elevated in patients with mild or moderate hypertension. Many studies in hypertensive mice models have detected IL-17A-producing cells in target organs such as the heart, vessels and kidneys. Patients with hypertensive nephrosclerosis show kidney infiltration by Th17 lymphocytes and γδ lymphocytes that express IL-17A. In addition, in experimental models of hypertension, the blockade of IL-17A by genetic strategies or using neutralizing antibodies, disminished blood pressure, probablyby acting on the small mesenteric arteries as well as in the regulation of tubule sodium transport. Moreover, IL-17A inhibition reduces end-organs damage. As a whole, the data presented in this review suggest that IL-17A participates in the regulation of blood pressure and in the genesis and maintenance of arterial hypertension, and may constitute a therapeutic target of hypertension-related pathologies in the future.


Asunto(s)
Hipertensión , Interleucina-17 , Animales , Anticuerpos Neutralizantes , Citocinas , Humanos , Interleucina-17/genética , Ratones , Sodio
13.
Front Pharmacol ; 9: 1195, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30386246

RESUMEN

Chronic kidney disease (CKD) is emerging as an important health problem due to the increase number of CKD patients and the absence of an effective curative treatment. Gremlin has been proposed as a novel therapeutic target for renal inflammatory diseases, acting via Vascular Endothelial Growth Factor Receptor-2 (VEGFR2). Although many evidences suggest that Gremlin could regulate renal fibrosis, the receptor involved has not been yet clarified. Gremlin, as other TGF-ß superfamily members, regulates tubular epithelial to mesenchymal transition (EMT) and, therefore, could contribute to renal fibrosis. In cultured tubular epithelial cells Gremlin binding to VEGFR2 is linked to proinflammatory responses. Now, we have found out that in these cells VEGFR2 is also involved in the profibrotic actions of Gremlin. VEGFR2 blockade by a pharmacological kinase inhibitor or gene silencing diminished Gremlin-mediated gene upregulation of profibrotic factors and restored changes in EMT-related genes. Moreover, VEGFR2 inhibition blocked EMT phenotypic changes and dampened the rate of wound healing in response to Gremlin. The role of VEGFR2 in experimental fibrosis was evaluated in experimental unilateral ureteral obstruction. VEFGR2 inhibition diminished the upregulation of profibrotic genes and EMT changes, as well as the accumulation of extracellular matrix proteins, such as fibronectin and collagens in the obstructed kidneys. Notch pathway activation participates in renal damage progression by regulating cell growth/proliferation, regeneration and inflammation. In cultured tubular epithelial cells, Notch inhibition markedly downregulated Gremlin-induced EMT changes and wound healing speed. These results show that Gremlin regulates the EMT process via VEGFR2 and Notch pathway activation, suggesting that the Gremlin/VEGFR2 axis could be a potential therapeutic target for CKD.

14.
Nefrologia (Engl Ed) ; 38(5): 466-475, 2018.
Artículo en Inglés, Español | MEDLINE | ID: mdl-29439807

RESUMEN

Notch pathway regulates key processes in the kidney, involved in embryonic development and tissue damage. In many human chronic renal diseases a local activation of Notch pathway has been described, suggesting that several components of Notch pathway could be considered as biomarkers of renal damage. Experimental studies by genetic modulation of Notch components or pharmacological approaches by γ-secretase inhibitors have demonstrated the role of this pathway in renal regeneration renal, podocyte apoptosis, proliferation and fibroblasts activation, and induction of epithelial to mesenchymal transition of tubular epithelial cells. Recent studies suggest an interaction between Notch and NF-κB pathway involved in the regulation of renal inflammatory process. On the other hand, there are some miRNAs that could regulate Notch components and down-stream responses. All these data suggest that Notch blockade could be a novel therapeutic option for renal diseases.


Asunto(s)
Enfermedades Renales/tratamiento farmacológico , Enfermedades Renales/terapia , Receptores Notch/antagonistas & inhibidores , Receptores Notch/fisiología , Transducción de Señal/fisiología , Animales , Humanos , Enfermedades Renales/etiología
15.
Plant Sci ; 251: 90-100, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27593467

RESUMEN

Water availability is the most important factor limiting food production, thus developing new scientific strategies to allow crops to more efficiently use water could be crucial in a world with a growing population. Tomato is a highly water consuming crop and improving its water use efficiency (WUE) implies positive economic and environmental effects. This work aimed to study and exploit root-derived hormonal traits to improve WUE in tomato by grafting on selected rootstocks. Firstly, root-related hormonal parameters associated to WUE were identified in a population of recombinant inbred lines (RILs) derived from the wild tomato species Solanum pimpinellifolium. A principal component analysis (PCA) revealed that some hormonal traits were associated with productivity (plant biomass and photosynthesis) and WUE in the RIL population. Leaf ABA concentration was associated to the first component (PC1) of the PCA, which explained a 60% of the variance in WUE, while the ethylene precursor ACC and the ratio ACC/ABA were also associated to PC1 but in the opposite direction. Secondly, we selected RILs according to their extreme biomass (high, B, low, b) and water use (high, W, low, w), and studied the differential effect of shoot and root on WUE by reciprocal grafting. In absence of any imposed stress, there were no rootstock effects on vegetative shoot growth and water relations. Finally, we exploited the previously identified root-related hormonal traits by grafting a commercial tomato variety onto the selected RILs to improve WUE. Interestingly, rootstocks that induced low biomass and water use, 'bw', improved fruit yield and WUE (defined as fruit yield/water use) by up to 40% compared to self-grafted plants. Although other hormonal factors appear implicated in this response, xylem ACC concentration seems an important root-derived trait that inhibits leaf growth but does not limit fruit yield. Thus tomato WUE can be improved exploiting rootstock-derived hormonal signals which control leaf growth.


Asunto(s)
Solanum lycopersicum/metabolismo , Agua/metabolismo , Biomasa , Clorofila/metabolismo , Conservación de los Recursos Naturales , Frutas/crecimiento & desarrollo , Frutas/metabolismo , Frutas/fisiología , Solanum lycopersicum/fisiología , Reguladores del Crecimiento de las Plantas/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología , Raíces de Plantas/metabolismo , Raíces de Plantas/fisiología , Análisis de Componente Principal
16.
Plant Physiol Biochem ; 84: 197-202, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25289519

RESUMEN

Organogenesis in peach (Prunus persica L. Batsch) and peach rootstocks (P. persica × Prunus dulcis) has been achieved and the action of the regeneration medium on 7 phytohormones, zeatin (Z), zeatin riboside (ZR), indole-3-acetic acid (IAA), abscisic acid (ABA), ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC), salicylic acid (SA), and jasmonic acid (JA), has been studied using High performance liquid chromatography - mass spectrometry (HPLC-MS/MS). Three scion peach cultivars, 'UFO-3', 'Flariba' and 'Alice Bigi', and the peach × almond rootstocks 'Garnem' and 'GF677' were cultured in two different media, Murashige and Skoog supplemented with plant growth regulators (PGRs) (regeneration medium) and without PGRs (control medium), in order to study the effects of the media and/or genotypes in the endogenous hormones content and their role in organogenesis. The highest regeneration rate was obtained with the peach × almond rootstocks and showed a lower content of Z, IAA, ABA, ACC and JA. Only Z, ZR and IAA were affected by the action of the culture media. This study shows which hormones are external PGRs-dependent and what is the weight of the genotype and hormones in peach organogenesis that provide an avenue to manipulate in vitro organogenesis in peach.


Asunto(s)
Citocininas/farmacología , Reguladores del Crecimiento de las Plantas/metabolismo , Prunus/metabolismo , Ácido Abscísico/metabolismo , Aminoácidos Cíclicos/metabolismo , Ciclopentanos/metabolismo , Ácidos Indolacéticos/metabolismo , Isopenteniladenosina/análogos & derivados , Isopenteniladenosina/metabolismo , Organogénesis/efectos de los fármacos , Oxilipinas/metabolismo , Prunus/efectos de los fármacos , Ácido Salicílico/metabolismo , Zeatina/metabolismo
17.
J Plant Physiol ; 171(8): 619-24, 2014 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-24709154

RESUMEN

The relationship between endogenous hormones content and the induction of somatic peach plant was studied. To induce multiple shoots from callus derived from the base of stem explants of the scion cultivars 'UFO-3', 'Flariba' and 'Alice Bigi', and the peach×almond rootstocks 'Garnem' and 'GF677', propagated plants were cultured on Murashige and Skoog salts augmented with 0.1mgL(-1) of indolebutyric acid, 1mgL(-1) of 6-benzylaminopurine and 3% sucrose. The highest regeneration rate was obtained with the peach×almond rootstocks. Endogenous levels of abscisic acid (ABA), indole-3-acetic acid (IAA), zeatin (Z), zeatin riboside (ZR), ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC), salicylic acid (SA), and jasmonic acid (JA) were analyzed in the organogenic callus. Lower levels of several hormones, namely Z, ZR, ABA, and ACC were found in the peach×almond rootstock compared to peach cultivars, while IAA and SA presented inconclusive returns. These results suggest that the difference in somatic organogenesis capacity observed in peach and peach×almond hybrids is markedly affected by the endogenous hormonal content of the studied genotypes.


Asunto(s)
Reguladores del Crecimiento de las Plantas/metabolismo , Prunus/crecimiento & desarrollo , Prunus/genética , Cromatografía Líquida de Alta Presión , Hibridación Genética , Espectrometría de Masas , Morfogénesis , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/metabolismo , Prunus/metabolismo
18.
Plant Physiol Biochem ; 59: 30-6, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22244306

RESUMEN

In this work we investigate the effect of the imbibition of pea seeds with different thioproline (TP) concentrations on the germination percentage and the early growth of the seedlings. The interaction between TP and hydrogen peroxide (H2O2) treatments is also analysed in order to test if any synergy in germination and growth occurs. Although the imbibition of pea seeds in the presence of TP did not significantly improve the germination percentage, TP and/or H2O2 pre-treatments increased seedlings growth. This increase in seedling growth was reduced by abscisic acid (ABA) addition. Imbibition of pea seeds in the presence of ABA also reduced the endogenous H2O2 contents of pea seedlings in control and TP-treated seeds. The incubation of pea seeds with TP and/or H2O2 in presence or absence of ABA decreased the activity of H2O2-scavenging enzymes. The increase of the endogenous H2O2 contents observed in TP and/or H2O2 treatments in absence of ABA could be correlated with the decrease in these activities. Finally, the hormone profile of pea seedlings was investigated. The results show that the increase in seedling growth is correlated with a decrease in ABA in samples pre-treated with H2O2 and TP + H2O2. Nevertheless, no significant differences in endogenous ABA concentration were observed with the TP pre-treatment. This paper suggests a relationship between endogenous H2O2 contents and plant growth, so reinforcing the intricate crosstalk between reactive oxygen species (ROS) and plant hormones in seed germination signalling and early seedling development.


Asunto(s)
Ácido Abscísico/farmacología , Antioxidantes/farmacología , Peróxido de Hidrógeno/farmacología , Pisum sativum/efectos de los fármacos , Reguladores del Crecimiento de las Plantas/farmacología , Tiazolidinas/farmacología , Sinergismo Farmacológico , Germinación/efectos de los fármacos , Pisum sativum/crecimiento & desarrollo , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo , Semillas/efectos de los fármacos , Semillas/crecimiento & desarrollo
19.
Nefrología (Madrid) ; 38(5): 466-475, sept.-oct. 2018. graf, tab
Artículo en Español | IBECS (España) | ID: ibc-177632

RESUMEN

La vía de Notch regula procesos importantes en el riñón implicados en el desarrollo embrionario y en situaciones de agresión tisular. Así, en una gran variedad de nefropatías crónicas humanas se ha descrito una activación local de este sistema, sugiriendo que algunos de sus componentes podrían ser biomarcadores de daño renal. Los estudios realizados en modelos experimentales, modulando genéticamente componentes de la vía Notch o mediante su bloqueo farmacológico con inhibidores de la γ-secretasa, han demostrado la participación de esta vía en la regeneración renal, en la apoptosis de podocitos, en la proliferación y activación de fibroblastos y en la transición epitelio-mesenquimal de las células tubuloepiteliales. Estudios recientes sugieren una interacción entre las vías Notch y NF-κB, la cual podría jugar un papel relevante en el proceso inflamatorio renal. Por otra parte, en los últimos años se han descrito miRNA que son capaces de regular componentes de la vía Notch y modular sus respuestas. Todos estos datos indican que el bloqueo de la vía de señalización Notch podría representar una nueva opción terapéutica para la enfermedad renal


Notch pathway regulates key processes in the kidney, involved in embryonic development and tissue damage. In many human chronic renal diseases a local activation of Notch pathway has been described, suggesting that several components of Notch pathway could be considered as biomarkers of renal damage. Experimental studies by genetic modulation of Notch components or pharmacological approaches by γ-secretase inhibitors have demonstrated the role of this pathway in renal regeneration renal, podocyte apoptosis, proliferation and fibroblasts activation, and induction of epithelial to mesenchymal transition of tubular epithelial cells. Recent studies suggest an interaction between Notch and NF-κB pathway involved in the regulation of renal inflammatory process. On the other hand, there are some miRNAs that could regulate Notch components and down-stream responses. All these data suggest that Notch blockade could be a novel therapeutic option for renal diseases


Asunto(s)
Humanos , Receptores Notch/metabolismo , Insuficiencia Renal Crónica/terapia , Receptores Notch/antagonistas & inhibidores , Transducción de Señal , Factores de Diferenciación de Crecimiento/metabolismo , Angiotensina II/metabolismo , FN-kappa B/metabolismo , ARN Largo no Codificante/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA