Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Ecotoxicol Environ Saf ; 273: 116122, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38402794

RESUMEN

With the widespread application of carbon dots (CDs) in fluorescence imaging, their toxicity has become a focal point of concern. The potential toxicity of CDs synthesized from different raw materials remains an unresolved issue. Laver and wakame, which are commonly popular sea vegetable foods rich in nutrients, were utilized to investigate whether synthetic CDs derived from these alga sources retain medicinal value. Herein, two types of fluorescent alga-derived CDs were prepared through hydrothermal synthesis using laver and wakame respectively. Zebrafish were immersed in both types of CDs to observe their fluorescence imaging effects within the zebrafish bodies. It was observed that laver-derived CDs and wakame-derived CDs exhibited similar luminescence properties but differed in terms of fish egg imaging localization. Additionally, intestinal flora sequencing revealed varying degrees of influence on the zebrafish gut microbiota by the two types of CDs, suggesting that both alga-derived CDs could enhance the abundance of intestinal flora in zebrafish.


Asunto(s)
Algas Comestibles , Porphyra , Puntos Cuánticos , Undaria , Animales , Puntos Cuánticos/toxicidad , Pez Cebra , Carbono , Colorantes , Colorantes Fluorescentes
2.
J Biol Chem ; 295(41): 14140-14152, 2020 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-32690611

RESUMEN

Transcriptional repressor zinc finger and BTB domain containing 1 (ZBTB1) is required for DNA repair. Because DNA repair defects often underlie genome instability and tumorigenesis, we determined to study the role of ZBTB1 in cancer. In this study, we found that ZBTB1 is down-regulated in breast cancer and this down-regulation is associated with poor outcome of breast cancer patients. ZBTB1 suppresses breast cancer cell proliferation and tumor growth. The majority of breast cancers are estrogen receptor (ER) positive and selective estrogen receptor modulators such as tamoxifen have been widely used in the treatment of these patients. Unfortunately, many patients develop resistance to endocrine therapy. Tamoxifen-resistant cancer cells often exhibit higher HER2 expression and an increase of glycolysis. Our data revealed that ZBTB1 plays a critical role in tamoxifen resistance in vitro and in vivo To see if ZBTB1 regulates HER2 expression, we tested the recruitments of ZBTB1 on HER2 regulatory sequences. We observed that over-expressed ZBTB1 occupies the estrogen receptor α (ERα)-binding site of the HER2 intron in tamoxifen-resistant cells, suppressing tamoxifen-induced transcription. In an effort to identify potential microRNAs (miRNAs) regulating ZBTB1, we found that miR-23b-3p directly targets ZBTB1. MiR-23b-3p regulates HER2 expression and tamoxifen resistance via targeting ZBTB1. Finally, we found that miR-23b-3p/ZBTB1 regulates aerobic glycolysis in tamoxifen-resistant cells. Together, our data demonstrate that ZBTB1 is a tumor suppressor in breast cancer cells and that targeting the miR-23b-3p/ZBTB1 may serve as a potential therapeutic approach for the treatment of tamoxifen resistant breast cancer.


Asunto(s)
Neoplasias de la Mama/metabolismo , Resistencia a Antineoplásicos/efectos de los fármacos , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glucólisis/efectos de los fármacos , Receptor ErbB-2/biosíntesis , Proteínas Represoras/metabolismo , Tamoxifeno/farmacología , Proteínas Supresoras de Tumor/metabolismo , Animales , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Resistencia a Antineoplásicos/genética , Femenino , Glucólisis/genética , Humanos , Células MCF-7 , Ratones , Ratones Desnudos , Receptor ErbB-2/genética , Proteínas Represoras/genética , Proteínas Supresoras de Tumor/genética
3.
Mol Cell Neurosci ; 86: 58-64, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29183796

RESUMEN

Neuroinflammation triggered by activation of glial cells plays an important role in the pathophysiology of several neurodegenerative diseases including Parkinson's disease (PD). Besides microglia, astrocytes are also critical in initiating and perpetuating inflammatory process associated with PD. Heat shock protein 70 (Hsp70) is originally described as intracellular chaperone, however, recent study revealed that it had anti-inflammatory effects as well. The present study is designed to investigate whether Hsp70 mediates neuroinflammation in astrocytes. By employing α-synuclein (α-Syn) (A53T) aggregates on primary cultured astrocytes of rats, we found that astrocytes were activated and neuroinflammatory response was triggered, as indicated by over-expression of glial fibrillary acidic protein (GFAP), cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS), increased production of tumor necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß). The data also showed that the neuroinflammatory response accompanied up-regulated Hsp70 expression. Moreover, over-expression of Hsp70 through transfection of Hsp70 cDNA plasmids could significantly reduce the production of TNF-α, IL-1ß, and the expression of GFAP, COX-2 as well as iNOS. While inhibition of Hsp70 by VER155008 exacerbated neuroinflammatory response in astrocytes challenged by α-Syn aggregates. Further mechanistic study indicated that c-Jun N-terminal kinase (JNK) and nuclear factor-κB (NF-κB) signalings were responsible for the neuroinflammation, which was also regulated by Hsp70. These findings demonstrated that Hsp70 was an important modulator in astrocytes induced inflammation, and up-regulation of Hsp70 might be a potential regulating approach for neuroinflammation-related neurodegenerative diseases, such as PD.


Asunto(s)
Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Proteínas HSP70 de Choque Térmico/biosíntesis , alfa-Sinucleína/toxicidad , Animales , Células Cultivadas , Humanos , Inflamación/inducido químicamente , Inflamación/metabolismo , Inflamación/prevención & control , Ratas , Ratas Sprague-Dawley
4.
Environ Microbiol ; 20(4): 1531-1549, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29488307

RESUMEN

Botrytis cinerea is a necrotrophic plant fungal pathogen that annually causes enormous economic losses worldwide. The ribosome is an organelle for cellular protein biosynthesis. However, little is known about how the ribosome operates as a machine to mediate microbial pathogenesis. Here, we demonstrate that Nop53, a late-acting factor for 60S ribosomal subunit maturation, is crucial for the pathogen's development and virulence. BcNop53 is functionally equivalent to yeast nop53p. Complementation of BcNOP53 completely restored the growth defect of the yeast Δnop53 mutant. BcNop53 is located in nuclei and disruption of BcNOP53 also dramatically impaired pathogen growth. Deletion of BcNOP53 blocked infection structure formation and abolished virulence of the pathogen, possibly due to reduced production of reactive oxygen species. Moreover, loss of BcNOP53 impaired pathogen conidiation and stress adaptation, altered conidial and sclerotial morphology, retarded conidium and sclerotium germination as well as reduced the activities of cell-wall degradation-associated enzymes. Sclerotium production was, however, increased. Complementation with the wild-type BcNOP53 allele rescued defects found in the ΔBcnop53 mutant. Our work establishes a systematic elucidation of Nop53 in regulating microbial development and pathogenesis, provides novel insights into ribosomal processes that regulate fungal pathogenesis, and may open up new targets for addressing fungal diseases.


Asunto(s)
Botrytis , Proteínas Nucleares/genética , Especies Reactivas de Oxígeno/metabolismo , Ribosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Botrytis/genética , Botrytis/crecimiento & desarrollo , Botrytis/patogenicidad , Proteínas Nucleares/metabolismo , Enfermedades de las Plantas/microbiología , Precursores del ARN/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Esporas Fúngicas/crecimiento & desarrollo , Virulencia
5.
Environ Microbiol ; 20(5): 1794-1814, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29614212

RESUMEN

The process of initiation of host invasion and survival of some foliar phytopathogenic fungi in the absence of external nutrients on host leaf surfaces remains obscure. Here, we demonstrate that gluconeogenesis plays an important role in the process and nutrient-starvation adaptation before the pathogen host invasion. Deletion of phosphoenolpyruvate carboxykinase gene BcPCK1 in gluconeogenesis in Botrytis cinerea, the causative agent of grey mould, resulted in the failure of the ΔBcpck1 mutant conidia to germinate on hard and hydrophobic surface and penetrate host cells in the absence of glucose, reduction in conidiation and slow conidium germination in a nutrient-rich medium. The wild-type and ΔBcpck1 conidia germinate similarly in the presence of glucose (higher concentration) as the sole carbon source. Conidial glucose-content should reach a threshold level to initiate germination and host penetration. Infection structure formation by the mutants displayed a glucose-dependent fashion, which corresponded to the mutant virulence reduction. Exogenous glucose or complementation of BcPCK1 completely rescued all the developmental and virulence defects of the mutants. Our findings demonstrate that BcPCK1 plays a crucial role in B. cinerea pathogenic growth and virulence, and provide new insights into gluconeogenesis mediating pathogenesis of plant fungal pathogens via initiation of conidial germination and host penetration.


Asunto(s)
Botrytis/metabolismo , Proteínas Fúngicas/metabolismo , Gluconeogénesis/fisiología , Botrytis/genética , Fragaria/microbiología , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica/fisiología , Gluconeogénesis/genética , Solanum lycopersicum/microbiología , Enfermedades de las Plantas/microbiología , Hojas de la Planta/microbiología , Esporas Fúngicas/metabolismo , Virulencia
6.
Environ Sci Technol ; 51(9): 4988-4998, 2017 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-28394116

RESUMEN

The application of animal manure containing antibiotic residues to farmlands as an organic fertilizer causes a long-term potential threat to the ecological environment of farmland. This study analyzed the effects of abating typical antibiotics and resistance genes (ARGs) applied with pig manure on farmland soil as well as on soil ecosystem multifunctionality (EMF) and its influencing factor. The results showed that Lolium multiflorum exhibited significantly stronger abatement of typical antibiotics and ARGs when combined with biochar than when used alone (p < 0.05). The dissipation of antibiotics significantly enhanced the soil functions (respiratory, ammonification, and nitrification activities) (p < 0.05). A structural equation model was established to explore the effects of abating antibiotics and ARGs in different treatment systems on soil EMF. The treatment of plant roots with ryegrass alone and in combination with biochar exerted direct positive effects on the physical structure and EMF (p < 0.001). The improvement in soil physical structure directly promoted the abatement of antibiotics and ARGs (p < 0.01). Soil pH and trace elements exerted weaker effects on antibiotics and ARGs after the application of biochar. Plant roots were the most important factor in promoting the EMF of soil containing antibiotics and ARGs.


Asunto(s)
Estiércol , Suelo/química , Animales , Antibacterianos/farmacología , Farmacorresistencia Microbiana/genética , Ecosistema , Microbiología del Suelo , Porcinos
7.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 39(4): 534-538, 2017 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-28877832

RESUMEN

Objective To investigate the mechanism of non-receptor tyrosine kinase Src regulating neuroinflammation through phosphatase and tensin homology protein(PTEN)in microglia. Methods BV2 cells were incubated with PTEN inhibitor bpv(HOpic)for 2 hours,and then added with lipopolysaccharide(LPS)to induce neuroinflammation,Western blot was performed to determine the expression of phosphorylated protein kinase B(Akt)to investigate the activity of PTEN. Enzyme-linked immunosorben assay(ELISA)was used to determine the release of tumor necrosis factor α(TNF-α)to assess neuroinflammation.After PTEN inhibitor or Src specific small interfering RNA was added,the change of neuroinflammation was evaluated to study the mechanism of Src regulating neuroinflammation. Results LPS induced significant neuroinflammation in BV2 cells,as indicated by significantly increased expression of p-Akt and release of TNF-α(P<0.001).The PTEN inhibitor signficantly increased Akt phosphorylation(P<0.05)and TNF-α release(P<0.001)in LPS-induced BV2 cells compared to simply LPS-induced cells.The Src small interfering RNA significantly decreased the release of TNF-α(P<0.001)and inhibited PTEN(P<0.001)and Akt(P<0.001)phosphorylation. Conclusion Src kinase may regulate neuroinflammtion response in BV2 cells by regulating the phosphorylation of PTEN.


Asunto(s)
Microglía/metabolismo , Fosfohidrolasa PTEN/metabolismo , Familia-src Quinasas/metabolismo , Animales , Línea Celular , Lipopolisacáridos , Ratones , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Factor de Necrosis Tumoral alfa/metabolismo
8.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 38(2): 228-33, 2016 Apr.
Artículo en Zh | MEDLINE | ID: mdl-27181903

RESUMEN

Microglia are the resident innate immune cells in the brain. Under endogenous or exogenous stimulates, they become activated and play an important role in the neurodegenerative diseases. Microglial phagocytosis is a process of receptor-mediated engulfment and degradation of apoptotic cells. In addition, microglia can phagocyte brain-specific cargo, such as myelin debris and abnormal protein aggregation. However, recent studies have shown that microglia can also phagocyte stressed-but-viable neurons, causing loss of neurons in the brain. Thus, whether microglial phagocytosis is beneficial or not in neurodegenerative disease remains controversial. This article reviews microglial phagocytosis related mechanisms and its potential roles in neurodegenerative diseases, with an attempt to provide new insights in the treatment of neurodegenerative diseases.


Asunto(s)
Microglía/citología , Enfermedades Neurodegenerativas/fisiopatología , Fagocitosis , Humanos
9.
BMC Biotechnol ; 15: 17, 2015 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-25887229

RESUMEN

BACKGROUND: As the strongest antagonist of the platelet activating factor, ginkgolide B (GB) possesses anti-ischemic, anti-oxidant and anti-convulsant properties, and it is used for the treatment of thrombosis in clinical practice. Till now, GB is usually obtained from extraction of Ginkgo biloba leaves through column chromatography with an extremely low yield and high cost, which can not meet clinical requirement. Therefore, it is urgent to find a new method to prepare GB. RESULTS: In the current study, we studied the ability and mechanism to transform multi-component ginkgolide into GB by Coprinus comatus in order to enhance the GB yield. Except for ginkgolide A (GA) and GB, all the other ginkgolides in the extract were transformed by the strain. In the case of culture medium containing 20 g/L glucose, the transformation product was identified as 12% GA and 88% GB by high performance liquid chromatography-Mass spectrometry (HPLC-MS), two stage mass spectrometry (MS/MS) and nuclear magnetic resonance (NMR). Partial GA was also transformed into GB according to the yield (76%) and the content of GA in the raw ginkgolide (28.5%). Glucose was the key factor to transform ginkgolides. When glucose concentration in medium was higher than 40 g/L, all ginkgolides were transformed into the GB. Proteomic analysis showed that C. comatus transformed ginkgolide into GB by producing 5 aldo/keto reductases and catalases, and enhancing the metabolism of glucose, including Embden-Meyerhof pathway (EMP), hexose monophophate pathway (HMP) and tricarboxylic acid (TCA). CONCLUSIONS: C. comatus could transform ginkgolides into GB when the medium contained 40 g/L glucose. When the strain transformed ginkgolides, the glucose metabolism was enhanced and the strain synthesized more aldo/keto reductases and catalases. Our current study laid the groundwork for industrial production of GB.


Asunto(s)
Coprinus/metabolismo , Ginkgo biloba/química , Ginkgólidos/química , Ginkgólidos/metabolismo , Lactonas/química , Lactonas/metabolismo , Extractos Vegetales/metabolismo , Biotransformación , Cromatografía Líquida de Alta Presión , Coprinus/química , Coprinus/enzimología , Electroforesis en Gel Bidimensional , Extractos Vegetales/química , Proteómica
10.
J Microencapsul ; 32(7): 711-8, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26471403

RESUMEN

Complexes of ethyl butyrate and hexanal encapsulated by ß-cyclodextrin (ß-CD) and γ-cyclodextrin (γ-CD) were prepared by coprecipitation, and gas chromatography was used to quantity the flavour compounds in the complexes. The ethyl butyrate-γ-CD complex had the highest inclusion ratio (12.20%) followed by the ethyl butyrate-ß-CD, hexanal-ß-CD and hexanal-γ-CD complexes (11.29, 4.41 and 3.33%, respectively). Release experiments were performed under different relative humidities (RH 93, 75 and 52%) and temperatures (4 and 25 °C). The flavour release behaviours of the complexes were described by the Avrami equation. The rate of flavour release was enhanced with both increasing temperature and RH, although the effect of RH was stronger. Physicochemical characterisation using FT-IR, XRD, DSC and SEM analyses demonstrated that crystalline complexes were formed. Both ß-CD and γ-CD were able to encapsulate ethyl butyrate and hexanal, and lower RH and temperature were more suitable for the storage of these complexes.


Asunto(s)
Butiratos/química , Aromatizantes/química , Hexobarbital/química , beta-Ciclodextrinas/química , gamma-Ciclodextrinas/química , Composición de Medicamentos , Aromatizantes/administración & dosificación , Industria de Alimentos , Conservación de Alimentos , Humedad , Cinética , Temperatura
11.
JASA Express Lett ; 4(3)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38467472

RESUMEN

Broadband active noise control systems incorporating fixed controllers exhibit limited ability to reduce sinusoids. This study presents a semi-adaptive feedforward hybrid active noise control (HANC) system to address this issue. The proposed system pairs fixed high-order optimal controllers for broadband noise with adaptive low-order FXLMS-based controllers for narrowband noise. Notably, parallel broadband and narrowband controllers work independently. The proposed semi-adaptive feedforward HANC system demonstrates low computational complexity which makes it suitable for multichannel systems. Simulations and experiments validate the effectiveness of the proposed system in controlling mixed noise.

12.
ACS Sens ; 9(4): 1877-1885, 2024 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-38573977

RESUMEN

The precise determination of DNA methylation at specific sites is critical for the timely detection of cancer, as DNA methylation is closely associated with the initiation and progression of cancer. Herein, a novel ratiometric fluorescence method based on the methylation-sensitive restriction enzyme (MSRE), CRISPR/Cas12a, and catalytic hairpin assembly (CHA) amplification were developed to detect site-specific methylation with high sensitivity and specificity. In detail, AciI, one of the commonly used MSREs, was employed to distinguish the methylated target from nonmethylated targets. The CRISPR/Cas12a system was utilized to recognize the site-specific target. In this process, the protospacer adjacent motif and crRNA-dependent identification, the single-base resolution of Cas12a, can effectively ensure detection specificity. The trans-cleavage ability of Cas12a can convert one target into abundant activators and can then trigger the CHA reaction, leading to the accomplishment of cascaded signal amplification. Moreover, with the structural change of the hairpin probe during CHA, two labeled dyes can be spatially separated, generating a change of the Förster resonance energy transfer signal. In general, the proposed strategy of tandem CHA after the CRISPR/Cas12a reaction not only avoids the generation of false-positive signals caused by the target-similar nucleic acid but can also improve the sensitivity. The use of ratiometric fluorescence can eradicate environmental effects by self-calibration. Consequently, the proposed approach had a detection limit of 2.02 fM. This approach could distinguish between colorectal cancer and precancerous tissue, as well as between colorectal patients and healthy people. Therefore, the developed method can serve as an excellent site-specific methylation detection tool, which is promising for biological and disease studies.


Asunto(s)
Sistemas CRISPR-Cas , Metilación de ADN , Sistemas CRISPR-Cas/genética , Humanos , Enzimas de Restricción del ADN/metabolismo , Enzimas de Restricción del ADN/química , Transferencia Resonante de Energía de Fluorescencia/métodos , Proteínas Asociadas a CRISPR/química , Proteínas Asociadas a CRISPR/metabolismo , Técnicas Biosensibles/métodos
13.
Talanta ; 271: 125663, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38232570

RESUMEN

Nucleic acids are essential biomarkers in molecular diagnostics. The CRISPR/Cas system has been widely used for nucleic acid detection. Moreover, canonical CRISPR/Cas12a based biosensors can specifically recognize and cleave target DNA, as well as single-strand DNA serving as reporter probe, which have become a super star in recent years in the field of nucleic acid detection due to its high specificity, universal programmability and simple operation. However, canonical CRISPR/Cas12a based biosensors are hard to meet the requirements of higher sensitivity, higher specificity, higher efficiency, larger target scope, easier operation, multiplexing, low cost and diversified signal reading. Then, advanced non-canonical CRISPR/Cas12a based biosensors emerge. In this review, applications of non-canonical CRISPR/Cas12a-based biosensors in nucleic acid detection are summarized. And the principles, peculiarities, performances and perspectives of these non-canonical CRISPR/Cas12a based biosensors are also discussed.


Asunto(s)
Sistemas CRISPR-Cas , Ácidos Nucleicos , ADN de Cadena Simple
14.
RSC Adv ; 14(2): 1459-1463, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38188260

RESUMEN

Recently, carbon dots (CDs) have been shown to exhibit exceptional water solubility, low toxicity, favorable biocompatibility, stable fluorescence properties with a wide and continuous excitation spectrum, and an adjustable emission spectrum. Their remarkable characteristics make them highly promising for applications in the field of bioimaging. Zebrafish is currently extensively studied because of its high genetic homology with humans and the applicability of disease research findings from zebrafish to humans. Therefore, spirulina, a commonly used feed additive in aquaculture, was chosen as the raw material for synthesizing fluorescent CDs using a hydrothermal method. On the one hand, CDs can modulate dopamine receptors in the brain of zebrafish, leading to an increase in dopamine production and subsequently promoting their locomotor activity. On the other hand, CDs have been shown to enhance the intestinal anti-inflammatory capacity of zebrafish. This study aimed to explore the chronic toxicity and genotoxicity of CDs in zebrafish while providing valuable insights for their future application in biological and medical fields.

15.
RSC Adv ; 14(21): 14505, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38708117

RESUMEN

[This corrects the article DOI: 10.1039/D3RA07623G.].

16.
Small Methods ; 7(2): e2201624, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36609885

RESUMEN

Deoxyribonucleic acid (DNA) methylation is one of the epigenetic characteristics that result in heritable and revisable phenotype changes but without sequence changes in DNA. Aberrant methylation occurring at a specific locus was reported to be associated with cancers, insulin resistance, obesity, Alzheimer's disease, Parkinson's disease, etc. Therefore, locus-specific DNA methylation can serve as a valuable biomarker for disease diagnosis and therapy. Recently, Clustered regularly interspaced short palindromic repeats (CRISPR)-Cas systems are applied to develop biosensors for DNA, ribonucleic acid, proteins, and small molecules detection. Because of their highly specific binding ability and signal amplification capacity, CRISPR-Cas assisted biosensor also serve as a potential tool for locus-specific detection of DNA methylation. In this perspective, based on the detection principle, a detailed classification and comprehensive discussion of recent works about the latest advances in locus-specific detection of DNA methylation using CRISPR-Cas systems are provided. Furthermore, current challenges and future perspectives of CRISPR-based locus-specific detection of DNA methylation are outlined.


Asunto(s)
Técnicas Biosensibles , Sistemas CRISPR-Cas , Metilación de ADN , ARN , ADN
17.
Front Neurol ; 14: 1120446, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36949855

RESUMEN

Objective: Neutrophil gelatinase-associated lipoprotein (NGAL), a protein encoded by the lipocalcin-2 (LCN2) gene, has been reported to be involved in multiple processes of innate immunity, but its relationship with spinal cord injury (SCI) remains unclear. This study set out to determine whether NGAL played a role in the development of cognitive impairment following SCI. Methods: At the Neck-Shoulder and Lumbocrural Pain Hospital, a total of 100 SCI patients and 72 controls were enrolled in the study through recruitment. Through questionnaires, baseline data on the participants' age, gender, education level, lifestyle choices (drinking and smoking) and underlying illnesses (hypertension, diabetes, coronary heart disease, and hyperlipidemia) were gathered. The individuals' cognitive performance was evaluated using the Montreal Cognitive Scale (MoCA), and their serum NGAL levels were discovered using ELISA. Results: The investigation included 72 controls and 100 SCI patients. The baseline data did not differ substantially between the two groups, however the SCI group's serum NGAL level was higher than the control group's (p < 0.05), and this elevated level was adversely connected with the MoCA score (p < 0.05). According to the results of the ROC analysis, NGAL had a sensitivity of 58.24% and a specificity of 86.72% for predicting cognitive impairment following SCI. Conclusions: The changes in serum NGAL level could serve as a biomarker for cognitive impairment in SCI patients, and this holds true even after taking in account several confounding variables.

18.
iScience ; 26(5): 106692, 2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37216089

RESUMEN

The complexity of the human intervertebral disc (IVD) has hindered the elucidation of the microenvironment and mechanisms underlying IVD degeneration (IVDD). Here we determined the landscapes of nucleus pulposus (NP), annulus fibrosus (AF), and immunocytes in human IVD by scRNA-seq. Six NP subclusters and seven AF subclusters were identified, whose functional differences and distribution during different stages of degeneration (Pfirrmann I-V) were investigated. We found MCAM+ progenitor in AF, as well as CD24+ progenitor and MKI67+ progenitor in NP, forming a lineage trajectory from CD24+/MKI67+ progenitors to EffectorNP_⅓ during IVDD. There is a significant increase in monocyte/macrophage (Mφ) in degenerated IVDs (p = 0.044), with Mφ-SPP1 exclusively found in IVDD but not healthy IVDs. Further analyses of the intercellular crosstalk network revealed interactions between major subpopulations and changes in the microenvironment during IVDD. Our results elucidated the unique characteristics of IVDD, thereby shedding light on therapeutic strategies.

19.
World J Clin Cases ; 11(10): 2308-2314, 2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-37122521

RESUMEN

BACKGROUND: Conservative treatments have been reported to diminish or resolve clinical symptoms of lumbar intervertebral disc herniation (LIDH) within a few weeks. CASE SUMMARY: Computed tomography and magnetic resonance imaging (MRI) of the lumbar region of a 25-year-old male diagnosed with LIDH showed prolapse of the L5/S2 disc. The disc extended 1.0 cm beyond the vertebral edge and hung along the posterior vertebral edge. The patient elected a conservative treatment regimen that included traditional Chinese medicine (TCM), acupuncture, and massage. During a follow-up period of more than 12 mo, good improvement in pain was reported without complications. MRI of the lumbar region after 12 mo showed obvious reabsorption of the herniation. CONCLUSION: A conservative treatment regimen of TCM, acupuncture, and massage promoted reabsorption of a prolapsed disc.

20.
Dis Markers ; 2022: 1033197, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35493300

RESUMEN

Objective: Although cognitive impairment has received more attention in recent years as a result of spinal cord injury (SCI), the pathogenic process that causes it is still unknown. The neuroprotective effects of Netrin as a family of laminin-related secreted proteins were discovered. The purpose of this study was to determine the changes of serum Netrin-1 after SCI and its relationship with cognitive impairment. Methods: 96 SCI patients and 60 controls were included in our study. We collected baseline data from all participants, measured their serum Netrin-1 levels, and followed up their cognitive levels 3 months later. Results: The clinical baseline values between the control and SCI groups were not significantly different (p > 0.05). However, the serum Netrin-1 level in the SCI group was significantly lower than that in the control group (528.4 ± 88.3 pg/ml vs. 673.5 ± 97.2 pg/ml, p < 0.05). According to the quartile level of serum Netrin-1 level in the SCI group, we found that with the increase of serum Netrin-1 level, the MoCA score also increased significantly (p < 0.001), indicating that the serum Netrin-1 level was positively correlated with the MoCA score after SCI. After controlling for baseline data, multiple regression analysis revealed that Netrin-1 remained an independent risk factor for cognitive impairment after SCI (=0.274, p = 0.036). Conclusions: Netrin-1 may be a neuroprotective factor for cognitive impairment, which may serve as a serum marker to predict cognitive impairment after SCI.


Asunto(s)
Disfunción Cognitiva , Traumatismos de la Médula Espinal , Biomarcadores , Disfunción Cognitiva/diagnóstico , Disfunción Cognitiva/etiología , Humanos , Netrina-1 , Análisis de Regresión , Traumatismos de la Médula Espinal/complicaciones , Traumatismos de la Médula Espinal/psicología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA