RESUMEN
The root of Gentiana straminea Maxim. (Gentianaceae), is officially listed as "Qin-Jiao" in the Chinese Pharmacopoeia for the treatment of rheumatic arthritis, icteric hepatitis, constipation, pain, and hypertension. To establish the geographical origin traceability in G. straminea, its chemical profiles were determined by a UPLC-Q exactive mass spectrometer, from which 43 compounds were identified by comparing retention times and mass spectrometry. Meanwhile, a pair of isomers (loganin and secologanol) was identified by mass spectrometry based on their fragmentation pathway. A total of 42 samples from difference habitats were determined by an UPLC-Q exactive mass spectrometer and the data were assayed with multivariate statistical analysis. Eight characteristic compounds were identified to determine the geographical origin of the herb. To estimate the key characteristic markers associated with pharmacological function, the inhibiting activities of nitric oxide (NO) production in lipopolysaccharide (LPS)-induced macrophages were examined. This finding is crucial in realizing the determination of botanical origin and evaluating the quality of G. straminea.
Asunto(s)
Gentiana/metabolismo , Glicósidos Iridoides/química , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Espectrometría de Masas , Metabolómica , Análisis Multivariante , Óxido Nítrico/metabolismoRESUMEN
To explore the mechanism of Ezhu-containing serum in inhibiting the expression of sonic hedgehog(Shh) and glioma-associated oncogene homolog-1(Gli1) in hepatic stellate cells(HSCs) induced by leptin. Twenty sprague-dawley (SD) rats were randomly divided into 2 groups (n=10), and given Ezhu-decoction and physiological saline by gavage for 10 days to prepare drug-containing serums. The HSCs during the exponential growth phase were divided into 7 groupsï¼ blank control group, model group, hedgehog pathway inhibitor(cyclopamine) group, Ezhu group, Ezhu and cyclopamine group, hedgehog pathway agonost(pumorphamine) group, Ezhu and purmorphamine group. HSCs were cultured in vitro and induced with 100 µgâ¢L ⻹ leptin(except for the blank control group), then treated separately with the corresponding drugs for 24 hours. After the cells were collected, HSCs proliferation was detected using MTT colorimetric assay; the expressions of Shh and Gli1 were determined by PT-PCR, Western blot and immunofluorescence, respectively. The expressions of Shh and Gli1 were significantly increased after the HSCs of rats were induced by leptin (compared with the blank control group, P<0.01). After being interfered with Hh pathway inhibitor (cyclopamine) and Ezhu-containing serum, the expressions of Shh and Gli1 were decreased significantly(compared with the model group, P<0.01). After Ezhu-containing serum was used to interfere the Hh pathway inhibitor group, the mRNA and protein expressions of Shh and Gli1 were decreased significantly(compared with the model group, P<0.01). After Ezhu-containing serum was used to interfere the purmorphamine group, the mRNA and protein expressions of Shh and Gli1 decreased significantly(compared with the purmorphamine group, P<0.01). Ezhu-containing serum plays an important role in inhibiting HSCs activation by taking part in hedgehog signaling pathway, so as to regulate the expression of Shh and Gli1 in leptin-induced HSCs and then inhibit liver fibrosis.
Asunto(s)
Medicamentos Herbarios Chinos/farmacología , Proteínas Hedgehog/metabolismo , Células Estrelladas Hepáticas/metabolismo , Proteína con Dedos de Zinc GLI1/metabolismo , Animales , Cirrosis Hepática , ARN Mensajero , Ratas , Ratas Sprague-Dawley , Transducción de SeñalRESUMEN
To observe the effect of Ligusticum wallichii-containing serum on the expressions of Toll-like receptor 4 and myeloid differentiation factor 88 in hepatic stellate cells. Clean-grade SD rats were randomly divided into 5 groups and orally given L. wallichii decoction, colchicine and normal saline for 7 d to prepare L. wallichii-containing serums. Except for the blank group, all of the remaining groups were stimulated with LPS 1 mg x L(-1) for 24 h. After being intervened, the L. wallichii-containing serums were cultured in 5% CO2 incubator at 37 degrees C for 24 hours. The expression of TLR4 and MyD88 were detected by RT-PCR and Western blot. After HSC was stimulated with LPS, TLR4 and MyD88 mRNA and protein expressions were significantly higher than the blank control group (P < 0.01). After being intervened with L. wallichii-containing serum, TLR4 and MyD88 mRNA and protein expressions were notably lower than the model group (P < 0.05 or P < 0.01). In conclusion, L. wallichii-containing serum could regulate the TLR4 signaling pathway and show the anti-fibrosis effect by inhibiting the expression of TLR4 and MyD88 in LPS-induced HSCs.
Asunto(s)
Células Estrelladas Hepáticas/efectos de los fármacos , Ligusticum , Factor 88 de Diferenciación Mieloide/genética , Receptor Toll-Like 4/genética , Animales , Femenino , Células Estrelladas Hepáticas/metabolismo , Lipopolisacáridos/farmacología , Cirrosis Hepática Experimental/tratamiento farmacológico , Factor 88 de Diferenciación Mieloide/fisiología , Fitoterapia , ARN Mensajero/análisis , Ratas , Ratas Sprague-Dawley , Receptor Toll-Like 4/fisiologíaRESUMEN
To observe the effects of Danshen-containing serum on SuFu and DYRK2 expression in the HSCs stimulated by leptin. SD rats (n = 60) were used to make danshen-containing serum by gastric perfusion for ten days with Danshen water decoction, normal saline and colchicine. The HSCs that were cultured in vitro would be stimulated for 24 hours by leptin (100 µg x L(-1)) except blank control group, after being intervened, the drug serum in each group would be cultured at 37 degrees C in 5% incubator. The cells would be collected after 24 hours, then the effects of danshen-containing serum on the proliferation of HSCs were detected by MTT, the expression of SuFu mRNA and DYRK2 mRNA were detected by RT-PCR, the expression of SuFu and DYRK2 proteins were tested by Western blot. Compared with blank control group, the expression of DYRK2 mRNA and DYRK2 proteins were enhanced obviously after stimulated the HSCs of rats by leptin (P < 0.01), but the expression of SuFu mRNA and SuFu proteins were decreased significantly (P < 0.01). Compared with the model group, after cyclopamine group (Hh pathway inhibitor), Danshen-containing serum and colchicine were interfered, the expression of DYRK2 mRNA and DYRK2 proteins were decreased clearly (P < 0.01), but the expression of SuFu mRNA and SuFu proteins were increased significantly (P < 0.01 or P < 0.05). Compared with model group, adding purmorphamine (Hh pathway agonist) to model group and making it activate could increase the expression of DYRK2 mRNA and DYRK2 proteins, but the expression of SuFu mRNA and SuFu proteins were decreased significantly (P < 0.01). Compared with the model group, using the Danshen-containing serum to interfere the purmorphamine group could make the expression of DYRK2 mRNA and DYRK2 proteins decrease and the expression of SuFu mRNA and SuFu proteins increase significantly (P < 0.01). Danshen-containing serum would inhibition the activation and increment of HSCs by interfering the expression of SuFu and DYRK2 which were induced by leptin.
Asunto(s)
Medicamentos Herbarios Chinos/administración & dosificación , Células Estrelladas Hepáticas/efectos de los fármacos , Cirrosis Hepática/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Tirosina Quinasas/genética , Proteínas Represoras/genética , Salvia miltiorrhiza/química , Animales , Femenino , Células Estrelladas Hepáticas/metabolismo , Humanos , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/metabolismo , Masculino , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Ratas , Ratas Sprague-Dawley , Proteínas Represoras/metabolismo , Quinasas DyrKRESUMEN
ETHNOPHARMACOLOGICAL RELEVANCE: Qizhuyanggan Decoction (QZD), a traditional Chinese medicine formula, is frequently utilized in clinical practice for managing hepatic fibrosis. However, the specific target and mechanism of action of QZD for hepatic fibrosis treatment remain unknown. AIM OF THE STUDY: By combining network pharmacology, serum medicinal chemistry, and experimental validation methods, our study aimed to investigate the therapeutic effects of QZD on hepatic fibrosis, the anti-hepatic fibrosis active ingredients, and the possible mechanism of anti-hepatic fibrosis action. MATERIALS AND METHODS: The study aimed to investigate the therapeutic effect of QZD on hepatic fibrosis induced by CCl4 in SD rats, as well as its mechanism of action. The rats were anesthetized intraperitoneally using 3% pentobarbital and were executed after asphyxiation with high concentrations of carbon dioxide. Several techniques were employed to evaluate the efficacy of QZD, including ELISA, Western blot, HYP reagent assay, and various pathological examinations such as HE, Masson, Sirius Red staining, and immunohistochemistry (IHC). Additionally, serum biochemical assays were conducted to assess the effect of QZD on liver injury. Network pharmacology, UPLC, molecular docking, and molecular dynamics simulation were utilized to explore the mechanism of QZD in treating hepatic fibrosis. Finally, experimental validation was performed through ELISA, IHC, RT-qPCR, and Western blot analysis. RESULT: Liver histopathology showed that QZD reduced inflammation and inhibited collagen production, and QZD significantly reduced HA and LN content to treat hepatic fibrosis. Serum biochemical analysis showed that QZD improved liver injury. Network pharmacology combined with UPLC screened six active ingredients and obtained 87 targets for the intersection of active ingredients and diseases. The enrichment analysis results indicated that the PI3K/AKT pathway might be the mechanism of action of QZD in the treatment of hepatic fibrosis, and counteracting the inflammatory response might be one of the pathways of action of QZD. Molecular docking and molecular dynamics simulations showed that the active ingredient had good binding properties with PI3K, AKT, and mTOR proteins. Western blot, ELISA, PCR, and IHC results indicated that QZD may treat hepatic fibrosis by inhibiting the PI3K/AKT/mTOR pathway and suppressing M1 macrophage polarization, while also promoting M2 macrophage polarization. CONCLUSIONS: QZD may be effective in the treatment of hepatic fibrosis by inhibiting the PI3K/AKT/mTOR signaling pathway and M1 macrophage polarization, while promoting M2 macrophage polarization. This provides a strong basis for the clinical application of QZD.
Asunto(s)
Química Farmacéutica , Medicamentos Herbarios Chinos , Animales , Ratas , Ratas Sprague-Dawley , Simulación del Acoplamiento Molecular , Farmacología en Red , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Cirrosis Hepática/tratamiento farmacológico , Serina-Treonina Quinasas TOR , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéuticoRESUMEN
Purpose: Our study aims to reveal the pharmacological mechanism of Astragaloside IV in the treatment of pulmonary fibrosis(PF) through network pharmacology and experimental validation. Methods: We first determined the in vivo anti-pulmonary fibrosis effect of Astragaloside IV by HE, MASSON staining, and lung coefficients, then used network pharmacology to predict the signaling pathways and molecularly docked key pathway proteins, and finally validated the results by in vivo and in vitro experiments. Results: In in vivo experiments, we found that Astragaloside IV improved body weight (P < 0.05), increased lung coefficients (P < 0.05), and reduced lung inflammation and collagen deposition in mice with pulmonary fibrosis. The network pharmacology results showed that Astragaloside IV had 104 cross-targets with idiopathic pulmonary fibrosis, and the results of KEGG enrichment analysis indicated that cellular senescence could be an important pathway for Astragaloside IV in the treatment of pulmonary fibrosis. Astragaloside IV also bound well to senescence-associated proteins, according to molecular docking results. The results of both in vivo and in vitro experiments showed that Astragaloside IV significantly inhibited senescence protein markers such as P53, P21, and P16 and delayed cellular senescence (P < 0.05). In in vivo experiments, we also found that Astragaloside IV reduced the production of SASPs (P < 0.05), and in in vitro experiments, Astragaloside IV also reduced the production of ROS. In addition, by detecting epithelial-mesenchymal transition(EMT)-related marker protein expression, we also found that Astragaloside IV significantly inhibited the development of EMT in both in vivo and in vitro experiments (P < 0.05). Conclusion: Our research found that Astragaloside IV could alleviate bleomycin-induced PF by preventing cellular senescence and EMT.
Asunto(s)
Bleomicina , Fibrosis Pulmonar Idiopática , Ratones , Animales , Simulación del Acoplamiento Molecular , Farmacología en Red , Transición Epitelial-MesenquimalRESUMEN
Overview: In treating pulmonary fibrosis (PF), traditional Chinese medicine (TCM) has received much attention, but its mechanism is unclear. The pharmacological mechanisms of TCM can be explored through network pharmacology. However, due to its virtual screening properties, it still needs to be verified by in vitro or in vivo experiments. Therefore, we investigated the anti-PF mechanism of Yiqi Huayu Decoction (YHD) by combining network pharmacology with in vivo experiments. Methods: Firstly, we used classical bleomycin (BLM)-induced rat model of PF and administrated fibrotic rats with YHD (low-, medium-, and high-dose). We comprehensively assessed the treatment effect of YHD according to body weight, lung coefficient, lung function, and histopathologic examination. Second, we predict the potential targets by ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) combined with network pharmacology. In brief, we obtained the chemical ingredients of YHD based on the UHPLC-MS/MS and TCMSP database. We collected drug targets from TCMSP, HERB, and Swiss target prediction databases based on active ingredients. Disease targets were acquired from drug libraries, Genecards, HERB, and TTD databases. The intersecting targets of drugs and disease were screened out. The STRING database can obtain protein-protein interaction (PPI) networks and hub target proteins. Molecular Complex Detection (MCODE) clustering analysis combined with enrichment analysis can explore the possible biological mechanisms of YHD. Enrichment analyses were conducted through the R package and the David database, including the Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Ontology (GO), and Reactome. Then, we further validated the target genes and target proteins predicted by network pharmacology. Protein and gene expression detection by immunohistochemistry, Western blot (WB), and real-time quantitative PCR (rt-qPCR). Results: The results showed that high-dose YHD effectively attenuated BLM-induced lung injury and fibrosis in rats, as evidenced by improved lung function, relief of inflammatory response, and reduced collagen deposition. We screened nine core targets and cellular senescence pathways by UHPLC-MS/MS analysis and network pharmacology. We subsequently validated key targets of cellular senescence signaling pathways. WB and rt-qPCR indicated that high-dose YHD decreased protein and gene expression of senescence-related markers, including p53 (TP53), p21 (CDKN1A), and p16 (CDKN2A). Increased reactive oxygen species (ROS) are upstream triggers of the senescence program. The senescence-associated secretory phenotypes (SASPs), containing interleukin 6 (IL-6), tumor necrosis factor-alpha (TNF-α), and transforming growth factor-ß1 (TGF-ß1), can further exacerbate the progression of senescence. High-dose YHD inhibited ROS production in lung tissue and consistently reduced the SASPs expression in serum. Conclusion: Our study suggests that YHD improves lung pathological injury and lung function in PF rats. This protective effect may be related to the ability of YHD to inhibit cellular senescence.
RESUMEN
Aim: Gut microbiota is of crucial importance to cardiac health. Astragaloside IV (AS-IV) is a main active ingredient of Huangqi, a traditional edible and medicinal herb that has been shown to have beneficial effects on cardiac fibrosis (CF). However, it is still uncertain whether the consumption of AS-IV alleviates cardiac fibrosis through the gut microbiota and its metabolites. Therefore, we assessed whether the anti-fibrosis effect of AS-IV is associated with changes in intestinal microbiota and fecal metabolites and if so, whether some specific gut microbes are conducive to the benefits of AS-IV. Methods: Male C57BL-6J mice were subcutaneously injected with isoprenaline (ISO) to induce cardiac fibrosis. AS-IV was administered to mice by gavage for 14 days. The effects of AS-IV on cardiac function, myocardial enzyme, cardiac weight index (CWI), and histopathology of ISO-induced CF mice were investigated. Moreover, 16S rRNA sequencing was used to establish gut-microbiota profiles. Fecal-metabolites profiles were established using the liquid chromatograph-mass spectrometry (LC-MS). Results: AS-IV treatment prevented cardiac dysfunction, ameliorated myocardial damage, histopathological changes, and cardiac fibrosis induced by ISO. AS-IV consumption increased the richness of Akkermansia, Defluviitaleaceae_UCG-011, and Rikenella. AS-IV also modulated gut metabolites in their feces. Among 141 altered gut metabolites, amino acid production was sharply changed. Furthermore, noticeable correlations were found between several specific gut microbes and altered fecal metabolites. Conclusions: An increase of Akkermansia, Defluviitaleaceae_UCG-011, and Rikenella abundance, and modulation of amino acid metabolism, may contribute to the anti-fibrosis and cardiac protective effects of Astragaloside IV.
Asunto(s)
Microbioma Gastrointestinal , Akkermansia , Aminoácidos/farmacología , Animales , Bacteroidetes/genética , Heces/química , Fibrosis , Isoproterenol/análisis , Isoproterenol/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , ARN Ribosómico 16S/genética , Saponinas , TriterpenosRESUMEN
Diabetic nephropathy (DN), a common microvascular complication of diabetes, is one of the main causes of end-stage renal failure (ESRD) and imposes a heavy medical burden on the world. Yiqi Jiedu Huayu decoction (YJHD) is a traditional Chinese medicine formula, which has been widely used in the treatment of DN and has achieved stable and reliable therapeutic effects. However, the mechanism of YJHD in the treatment of DN remains unclear. This study aimed to investigate the mechanism of YJHD in the treatment of DN. Sprague-Dawley rats were randomly divided into a normal control group, a diabetic group, an irbesartan group, and three groups receiving different doses of YJHD. Animal models were constructed using streptozotocin and then treated with YJHD for 12 consecutive weeks. Blood and urine samples were collected during this period, and metabolic and renal function was assessed. Pathological kidney injury was evaluated according to the kidney appearance, hematoxylin-eosin staining, Masson staining, periodic-acid Schiff staining, periodic-acid Schiff methenamine staining, and transmission electron microscopy. The expression levels of proteins and genes were detected by immunohistochemistry, western blotting, and real-time qPCR. Our results indicate that YJHD can effectively improve renal function and alleviate renal pathological injury, including mesangial matrix hyperplasia, basement membrane thickening, and fibrosis. In addition, YJHD exhibited podocyte protection by alleviating podocyte depletion and morphological damage, which may be key in improving renal function and reducing renal fibrosis. Further study revealed that YJHD upregulated the expression of the autophagy-related proteins LC3II and Beclin-1 while downregulating p62 expression, suggesting that YJHD can promote autophagy. In addition, we evaluated the activity of the mTOR pathway, the major signaling pathway regulating the level of autophagy, and the upstream PI3K/Akt and AMPK pathways. YJHD activated the AMPK pathway while inhibiting the PI3K/Akt and mTOR pathways, which may be crucial to its promotion of autophagy. In conclusion, our study shows that YJHD further inhibits the mTOR pathway and promotes autophagy by regulating the activity of the PI3K/Akt and AMPK pathways, thereby improving podocyte injury, protecting renal function, and reducing renal fibrosis. This study provides support for the application of and further research into YJHD.
RESUMEN
Background: The outbreak of coronavirus disease 2019 (COVID-19) has rapidly spread to become a global emergency since December 2019. Chinese herbal medicine plays an important role in the treatment of COVID-19. Chinese herbal medicine honeysuckle is an extremely used traditional edible and medicinal herb. Many trials suggest that honeysuckle has obtained a good curative effect for COVID-19; however, no systematic evaluation on the clinical efficacy of honeysuckle in the treatment of COVID-19 is reported. This study aimed to evaluate the efficacy and safety of Chinese herbal medicine honeysuckle in the treatment of COVID-19. Methods: Seven electronic databases (PubMed, EMBASE, Cochrane Library, China National Knowledge Infrastructure, China Science and Technology Journal Database, Wanfang Database, and China Biology Medicine) were searched to identify randomized controlled trials (RCTs) of honeysuckle for adult patients (aged ≥ 18 years) with COVID-19. The Cochrane Risk of Bias Tool was applied to assess the methodological quality of trials. Review Manager 5.3 software was used for data analysis. Results: Overall, nine RCTs involving 1,286 patients were enrolled. Our meta-analyses found that combination therapy of honeysuckle and conventional therapy was more effective than conventional therapy alone in lung computed tomography (CT) [relative risk (RR) = 1.24, 95% confidence interval (95%CI) (1.12, 1.37), P < 0.0001], clinical cure rate [RR = 1.21, 95%CI (1.12, 1.31), P < 0.00001], and rate of conversion to severe cases [RR = 0.50, 95%CI (0.33, 0.76), P = 0.001]. Besides, combination therapy can improve the symptom score of fever, cough reduction rate, symptom score of cough, and inflammatory biomarkers (white blood cell (WBC) count; C-reactive protein (CRP)) (P < 0.05). Conclusion: Honeysuckle combined with conventional therapy may be beneficial for the treatment of COVID-19 in improving lung CT, clinical cure rate, clinical symptoms, and laboratory indicators and reducing the rate of conversion to severe cases. Besides, combination therapy did not increase adverse drug events. More high-quality RCTs are needed in the future.
RESUMEN
OBJECTIVE: To investigate the effects of Yiqi Huayu Hutan decoction on pulmonary fibrosis of rats which induced by bleomycin. METHODS: The rat model of pulmonary fibrosis was induced by intratracheal injection of bleomycin hydrochloride (5 mg/kg). Sixty SD rats were randomly divided into the normal group (group N), the model group (group M), the positive control group (group Y), group of low concentration (group LC), group of medium concentration (group MC) and group of high concentration of Yiqi Huayu Hutan decoction (group HC). After 4 weeks, the experimental groups were treated with low concentration decoction, medium concentration decoction and high concentration decoction respectively, and the Y group was treated with hydrocortisone acetate, the Group N and group M were treated with saline by intragastric administration. Twelve weeks later, rats were killed and the pathomorphism of pulmonary tissues of each group was observed by HE staining and Masson staining. Further, the expressions of transforming growth factor-ß1(TGF-ß1), Snail1, E-cadherin and Fibronectin in pulmonary tissues of each group were detected by qTR-PCR and Western blot. RESULTS: Compared with the model group, the collagen sediment in the interstitial was reduced in the experimental groups, especially in the group of medium concentration, which was observed by HE staining and Masson staining .Compared with the model group, the expressions of TGF-ß1, Snail1 and Fibronectin protein in pulmonary tissues of the treatment groups were decreased in the experimental group, especially in the group of medium concentration, which were detected by qRT-PCR and Western blot. CONCLUSION: Yiqi Huayu Hutan decoction can significantly improve the pulmonary fibrosis which is induced by bleomycin, and the mechanism is related to the inhibition of the expression of TGF-ß/Snail pathway of transcription TGF-ß1.
Asunto(s)
Medicamentos Herbarios Chinos/farmacología , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Animales , Bleomicina , Cadherinas/metabolismo , Fibronectinas/metabolismo , Fibrosis Pulmonar Idiopática/inducido químicamente , Pulmón/metabolismo , Pulmón/patología , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley , Factores de Transcripción de la Familia Snail/metabolismo , Factor de Crecimiento Transformador beta1/metabolismoRESUMEN
OBJECTIVE: To evaluate the effects of Toll-like receptor 4 (TLR4) signaling on the activation of the transcription factor activator protein-1 (AP-1) in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model of Parkinson's disease (PD). METHODS: The following groups were evaluated: normal saline (NS)-treated WT mice, NS-treated TLR4-knockout (KO) mice, MPTP-treated WT mice, and MPTP-treated TLR4-KO mice. After establishing the mouse model, behavioral changes were evaluated. AP-1 expression was detected by RT-PCR, Western blotting, immunohistochemistry and immunofluorescence staining. RESULTS: Compared to MPTP-treated WT mice, significantly reduced dyskinesia was observed in MPTP-treated TLR4-KO mice. AP-1 mRNA and protein levels were significantly up-regulated in the substantia nigras (SNs) of MPTP-treated WT mice relative to NS-treated mice (P<0.01); these levels were significantly reduced in MPTP-treated TLR4-KO mice relative to MPTP-treated WT mice (P<0.01). Immunohistochemical staining demonstrated that AP-1 was distributed throughout the SN in MPTP-treated mice, and immunofluorescence further showed that AP-1 was expressed in TH-positive neuronal cells and GFAP-positive astrocytes. In addition, immunofluorescence revealed that AP-1 expression was lower in TH-positive neurons and GFAP-positive astrocytes in the SNs of MPTP-treated TLR4-KO mice relative to MPTP-treated WT mice. CONCLUSIONS: The TLR4 pathway may play an important role in regulating AP-1 activation.
Asunto(s)
Enfermedad de Parkinson Secundaria/metabolismo , Receptor Toll-Like 4/metabolismo , Factor de Transcripción AP-1/metabolismo , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina , Animales , Astrocitos/metabolismo , Conducta Animal , Modelos Animales de Enfermedad , Masculino , Ratones Noqueados , Neuronas/metabolismo , Neuronas/patología , Enfermedad de Parkinson Secundaria/inducido químicamente , ARN Mensajero/metabolismo , Transducción de Señal , Sustancia Negra/efectos de los fármacos , Sustancia Negra/metabolismo , Receptor Toll-Like 4/genética , Factor de Transcripción AP-1/genéticaRESUMEN
AIM: To investigate the effect and mechanism of ascorbic acid on podocyte, last barrier of glomerular filtration, in diabetic rats. METHODS: Diabetic rats induced by streptozotocin injection intraperitoneally were treated by ascorbic acid for 5 weeks. The levels of blood glucose (BG), HbA1c, urinary albumin excretion rate (UAER) and superoxide diamutase (SOD), catalase (CAT) and malondialdehyde (MDA) in renal cortex were measured. The podocyte ultrastructure was observed while the expression of desmin protein, a marker of podocyte injury, was examined. RESULTS: Compared with control group, BG and HbA1c were increased markedly in diabetic group. The activities of SOD and CAT were decreased and the concentrations of MDA were increased significantly in diabetic renal cortex. There were the increased proteinic expression of desmin, foot process effacement in podocytes and UAER markedly in diabetic rats. Compared with diabetic rats, foot process effacement and the changes of UAER were ameliorated markedly while the activities of SOD were increased, the levels of MDA and proteinic expression of desmin were decreased markedly although BG, HbA1c and the activities of CAT were no significant difference in the diabetic rats by ascorbic acid treatment. CONCLUSION: The findings suggest that there are marked injury in podocyte, last barrier of glomerular filtration, in diabetic rats and administration of ascorbic acid can protect podocyte by increasing antioxidative capacity and ameliorating the renal oxidative stress.