Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Phytoremediation ; 25(11): 1455-1462, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36597829

RESUMEN

Cadmium (Cd) is the main heavy metal pollutant in soil. The combination of genetic engineering technology and Rizobium rhizogenes mediated technology can effectively improve the enrichment efficiency of heavy metals in super accumulators and reduce soil heavy metal pollution. In this study, the transgenic hairy root system containing the IRT1 gene of Cd hyperaccumulator-Brassica campestris L. was successfully constructed by the R. rhizogenes mediated method (IRT1 gene come from Arabidopsis thaliana). The hairy roots of each subculture can grow stably within 6 weeks, and IRT1 gene will not be lost within 50 subcultures., which is detected using PCR method. The results of Cd enrichment experiments showed that after treatment with 100 µmol/L Cd for 14 days, the growth state of transgenic IRT1 hairy roots only showed slight browning. Also, the accumulation value of Cd reached 331.61 µg/g and the enrichment efficiency of transgenic IRT1 hairy roots was 13.8% higher than that of wild-type hairy roots. Western blotting results showed that the expression of IRT1 protein in transgenic hairy roots was significantly higher than that of wild-type hairy roots under Cd stress. The above results indicated that the overexpression of IRT1 gene can help B. campestris L. hairy roots to effectively cope with Cd stress and improve its ability to enrich Cd.


In this study, the transgenic hairy root system containing the IRT1 gene of Cd hyperaccumulator-Brassica campestris L. was successfully constructed by the Rizobium rhizogenes mediated method. At the same time, the growth state and cadmium enrichment efficiency of transgenic hairy roots under different concentrations of Cd stress were studied. Overexpression of IRT1 gene can effectively improve the tolerance of hairy root to Cd. The enrichment efficiency of transgenic IRT1 hairy roots was 13.8% higher than that of wild-type hairy roots. The transgenic IRT1 hairy root system established in this study can be used as a reliable experimental model for the study of Cd adsorption mechanism, and can be further regenerated to obtain transgenic IRT1 B. campestris L. plants for the study of heavy metal Cd pollution remediation.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Brassica , Proteínas de Transporte de Catión , Brassica/genética , Brassica/metabolismo , Cadmio/metabolismo , Biodegradación Ambiental , Arabidopsis/genética , Arabidopsis/metabolismo , Suelo , Raíces de Plantas , Proteínas de Transporte de Catión/metabolismo , Proteínas de Arabidopsis/metabolismo
2.
Int J Mol Sci ; 21(1)2019 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-31888010

RESUMEN

Brassica campestris L., a hyperaccumulator of cadmium (Cd), is considered a candidate plant for efficient phytoremediation. The hairy roots of Brassica campestris L are chosen here as a model plant system to investigate the response mechanism of Brassica campestris L. to Cd stress. High-throughput sequencing technology is used to identify genes related to Cd tolerance. A total of 2394 differentially expressed genes (DEGs) are identified by RNA-Seq analysis, among which 1564 genes are up-regulated, and 830 genes are down-regulated. Data from the gene ontology (GO) analysis indicate that DEGs are mainly involved in metabolic processes. Glutathione metabolism, in which glutathione synthetase and glutathione S-transferase are closely related to Cd stress, is identified in the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. A Western blot shows that glutathione synthetase and glutathione S-transferase are involved in Cd tolerance. These results provide a preliminary understanding of the Cd tolerance mechanism of Brassica campestris L. and are, hence, of particular importance to the future development of an efficient phytoremediation process based on hairy root cultures, genetic modification, and the subsequent regeneration of the whole plant.


Asunto(s)
Brassica/crecimiento & desarrollo , Cadmio/farmacología , Perfilación de la Expresión Génica/métodos , Proteínas de Plantas/genética , Análisis de Secuencia de ARN/métodos , Biodegradación Ambiental , Brassica/efectos de los fármacos , Brassica/genética , Regulación de la Expresión Génica de las Plantas , Glutatión Sintasa/genética , Glutatión Transferasa/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Estrés Fisiológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA