Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Nanobiotechnology ; 22(1): 477, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39135044

RESUMEN

The secondary injury is more serious after traumatic brain injury (TBI) compared with primary injury. Release of excessive reactive oxygen species (ROS) and Ca2+ influx at the damaged site trigger the secondary injury. Herein, a neutrophil-like cell membrane-functionalized nanoparticle was developed to prevent ROS-associated secondary injury. NCM@MP was composed of three parts: (1) Differentiated neutrophil-like cell membrane (NCM) was synthesized, with inflammation-responsive ability to achieve effective targeting and to increase the retention time of Mn3O4 and nimodipine (MP) in deep injury brain tissue via C-X-C chemokine receptor type 4, integrin beta 1 and macrophage antigen-1. (2) Nimodipine was used to inhibit Ca2+ influx, eliminating the ROS at source. (3) Mn3O4 further eradicated the existing ROS. In addition, NCM@MP also exhibited desirable properties for T1 enhanced imaging and low toxicity which may serve as promising multifunctional nanoplatforms for precise therapies. In our study, NCM@MP obviously alleviated oxidative stress response, reduced neuroinflammation, protected blood-brain barrier integrity, relieved brain edema, promoted the regeneration of neurons, and improved the cognition of TBI mice. This study provides a promising TBI management to relieve the secondary spread of damage.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Calcio , Nanopartículas , Neutrófilos , Especies Reactivas de Oxígeno , Animales , Especies Reactivas de Oxígeno/metabolismo , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Lesiones Traumáticas del Encéfalo/metabolismo , Ratones , Nanopartículas/química , Calcio/metabolismo , Neutrófilos/metabolismo , Neutrófilos/efectos de los fármacos , Masculino , Membrana Celular/metabolismo , Membrana Celular/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/efectos de los fármacos , Ratones Endogámicos C57BL
2.
ACS Nano ; 18(19): 12453-12467, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38686995

RESUMEN

Traditional magnetic resonance imaging (MRI) contrast agents (CAs) are a type of "always on" system that accelerates proton relaxation regardless of their enrichment region. This "always on" feature leads to a decrease in signal differences between lesions and normal tissues, hampering their applications in accurate and early diagnosis. Herein, we report a strategy to fabricate glutathione (GSH)-responsive one-dimensional (1-D) manganese oxide nanoparticles (MONPs) with improved T2 relaxivities and achieve effective T2/T1 switchable MRI imaging of tumors. Compared to traditional contrast agents with high saturation magnetization to enhance T2 relaxivities, 1-D MONPs with weak Ms effectively increase the inhomogeneity of the local magnetic field and exhibit obvious T2 contrast. The inhomogeneity of the local magnetic field of 1-D MONPs is highly dependent on their number of primary particles and surface roughness according to Landau-Lifshitz-Gilbert simulations and thus eventually determines their T2 relaxivities. Furthermore, the GSH responsiveness ensures 1-D MONPs with sensitive switching from the T2 to T1 mode in vitro and subcutaneous tumors to clearly delineate the boundary of glioma and metastasis margins, achieving precise histopathological-level MRI. This study provides a strategy to improve T2 relaxivity of magnetic nanoparticles and construct switchable MRI CAs, offering high tumor-to-normal tissue contrast signal for early and accurate diagnosis.


Asunto(s)
Medios de Contraste , Imagen por Resonancia Magnética , Compuestos de Manganeso , Compuestos de Manganeso/química , Compuestos de Manganeso/farmacología , Animales , Ratones , Medios de Contraste/química , Humanos , Campos Magnéticos , Glutatión/química , Óxidos/química , Línea Celular Tumoral , Glioma/diagnóstico por imagen , Glioma/patología , Tamaño de la Partícula , Nanopartículas de Magnetita/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA