Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Hematol Oncol ; 42(2): e3250, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38949887

RESUMEN

Chronic lymphocytic leukemia (CLL) is the most common leukemia in western societies, recognized by clinical and molecular heterogeneity. Despite the success of targeted therapies, acquired resistance remains a challenge for relapsed and refractory CLL, as a consequence of mutations in the target or the upregulation of other survival pathways leading to the progression of the disease. Research on proteins that can trigger such pathways may define novel therapies for a successful outcome in CLL such as the receptor tyrosine kinase-like orphan receptor 1 (ROR1). ROR1 is a signaling receptor for Wnt5a, with an important role during embryogenesis. The aberrant expression on CLL cells and several types of tumors, is involved in cell proliferation, survival, migration as well as drug resistance. Antibody-based immunotherapies and small-molecule compounds emerged to target ROR1 in preclinical and clinical studies. Efforts have been made to identify new prognostic markers having predictive value to refine and increase the detection and management of CLL. ROR1 can be considered as an attractive target for CLL diagnosis, prognosis, and treatment. It can be clinically effective alone and/or in combination with current approved agents. In this review, we summarize the scientific achievements in targeting ROR1 for CLL diagnosis, prognosis, and treatment.


Asunto(s)
Leucemia Linfocítica Crónica de Células B , Receptores Huérfanos Similares al Receptor Tirosina Quinasa , Leucemia Linfocítica Crónica de Células B/metabolismo , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Leucemia Linfocítica Crónica de Células B/patología , Humanos , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/metabolismo , Pronóstico , Terapia Molecular Dirigida , Animales , Biomarcadores de Tumor/metabolismo
2.
Hematol Oncol ; 40(2): 181-190, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34783040

RESUMEN

CD49d, the α4 chain of the VLA-4 integrin, is a negative prognosticator in chronic lymphocytic leukemia (CLL) with a key role in CLL cell-microenvironment interactions mainly occurring via its ligands VCAM-1 and fibronectin. In the present study, we focused on EMILIN-1 (Elastin-MIcrofibriL-INterfacer-1), an alternative VLA-4 ligand whose role has been so far reported only in non-hematological settings, by investigating: i) the distribution of EMILIN-1 in CLL-involved tissues; ii) the capability of EMILIN-1 to operate, via its globular C1q (gC1q) domain, as additional adhesion ligand in CLL; iii) the functional meaning of EMILIN-1 gC1q/VLA-4 interactions in CLL. EMILIN-1 is widely present in the CLL-involved areas of bone marrow biopsies (BMBs) without difference between CD49d negative and positive cases, displaying at least three different expression patterns: "fibrillar", "dot-like" and "mixed". The lack in CLL-BMB of neutrophil elastase, whose proteolytic activity degrades EMILIN-1 and impairs EMILIN-1 function, suggests full functional EMILIN-1 in CLL independently of its expression pattern. Functionally, EMILIN-1 gC1q domain promotes adhesion of CLL cells through specific interaction with VLA-4, and releases pro-survival signals for CLL cells, as demonstrated by enhanced ERK and AKT phosphorylation and impairment of in-vitro-induced apoptosis. EMILIN-1/VLA-4 interaction can efficiently contribute to the maintenance of the neoplastic clone in CLL.


Asunto(s)
Leucemia Linfocítica Crónica de Células B , Elastina , Humanos , Integrina alfa4beta1/metabolismo , Leucemia Linfocítica Crónica de Células B/patología , Ligandos , Glicoproteínas de Membrana , Microfibrillas/metabolismo , Microfibrillas/patología , Microambiente Tumoral
3.
Front Immunol ; 15: 1393485, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38807597

RESUMEN

Introduction: In classical Hodgkin lymphoma (cHL), the survival of neoplastic cells is mediated by the activation of NF-κB, JAK/STAT and PI3K/Akt signaling pathways. CK2 is a highly conserved serine/threonine kinase, consisting of two catalytic (α) and two regulatory (ß) subunits, which is involved in several cellular processes and both subunits were found overexpressed in solid tumors and hematologic malignancies. Methods and results: Biochemical analyses and in vitro assays showed an impaired expression of CK2 subunits in cHL, with CK2α being overexpressed and a decreased expression of CK2ß compared to normal B lymphocytes. Mechanistically, CK2ß was found to be ubiquitinated in all HL cell lines and consequently degraded by the proteasome pathway. Furthermore, at basal condition STAT3, NF-kB and AKT are phosphorylated in CK2-related targets, resulting in constitutive pathways activation. The inhibition of CK2 with CX-4945/silmitasertib triggered the de-phosphorylation of NF-κB-S529, STAT3-S727, AKT-S129 and -S473, leading to cHL cell lines apoptosis. Moreover, CX-4945/silmitasertib was able to decrease the expression of the immuno-checkpoint CD274/PD-L1 but not of CD30, and to synergize with monomethyl auristatin E (MMAE), the microtubule inhibitor of brentuximab vedotin. Conclusions: Our data point out a pivotal role of CK2 in the survival and the activation of key signaling pathways in cHL. The skewed expression between CK2α and CK2ß has never been reported in other lymphomas and might be specific for cHL. The effects of CK2 inhibition on PD-L1 expression and the synergistic combination of CX-4945/silmitasertib with MMAE pinpoints CK2 as a high-impact target for the development of new therapies for cHL.


Asunto(s)
Antígeno B7-H1 , Quinasa de la Caseína II , Enfermedad de Hodgkin , Transducción de Señal , Humanos , Enfermedad de Hodgkin/metabolismo , Enfermedad de Hodgkin/tratamiento farmacológico , Enfermedad de Hodgkin/genética , Enfermedad de Hodgkin/patología , Quinasa de la Caseína II/metabolismo , Quinasa de la Caseína II/antagonistas & inhibidores , Quinasa de la Caseína II/genética , Antígeno B7-H1/metabolismo , Antígeno B7-H1/genética , Línea Celular Tumoral , Fenazinas , Naftiridinas/farmacología , Apoptosis , Regulación Neoplásica de la Expresión Génica , Fosforilación
4.
Biomolecules ; 13(4)2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-37189352

RESUMEN

The search for molecules to be targeted that are involved in apoptosis resistance/increased survival and pathogenesis of onco-hematological malignancies is ongoing since these diseases are still not completely understood. Over the years, a good candidate has been identified in the Heat Shock Protein of 70kDa (HSP70), a molecule defined as "the most cytoprotective protein ever been described". HSP70 is induced in response to a wide variety of physiological and environmental insults, allowing cells to survive lethal conditions. This molecular chaperone has been detected and studied in almost all the onco-hematological diseases and is also correlated to poor prognosis and resistance to therapy. In this review, we give an overview of the discoveries that have led us to consider HSP70 as a therapeutic target for mono- or combination-therapies in acute and chronic leukemias, multiple myeloma and different types of lymphomas. In this excursus, we will also consider HSP70 partners, such as its transcription factor HSF1 or its co-chaperones whose druggability could indirectly affect HSP70. Finally, we will try to answer the question asked in the title of this review considering that, despite the effort made by research in this field, HSP70 inhibitors never reached the clinic.


Asunto(s)
Proteínas de Choque Térmico , Mieloma Múltiple , Humanos , Proteínas de Choque Térmico/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Factores de Transcripción/metabolismo , Apoptosis/fisiología , Chaperonas Moleculares
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA